Question #92901
Solve the IVP.
x² dy/dx = cosx - 2xy , y(π) = 0, x>0.
1
Expert's answer
2019-08-23T12:19:49-0400

1 STEP: solve the homogeneous equation.


x2dydx=2xydxyx2dyy=2dxx\left.x^2\cdot\displaystyle\frac{dy}{dx}=-2xy\right|\cdot\displaystyle\frac{dx}{yx^2}\longrightarrow\quad \displaystyle\frac{dy}{y}=-2\cdot\displaystyle\frac{dx}{x}\longrightarrow\quad


dyy=2dxxlny=2lnx+lnC\int\displaystyle\frac{dy}{y}=-2\cdot\int\displaystyle\frac{dx}{x}\longrightarrow\quad \ln|y|=-2\cdot\ln|x|+\ln|C|\longrightarrow\quad


yhom(x)=Cx2\boxed{y_{hom}(x)=\frac{C}{x^2}}


2 STEP: solve the inhomogeneous equation.

We use the constant variation method


y(x)=C(x)x2dydx=C(x)x22C(x)x3y(x)=\displaystyle\frac{C(x)}{x^2}\longrightarrow\boxed{\frac{dy}{dx}=\frac{C'(x)}{x^2}-2\cdot\frac{C(x)}{x^3}}


Substitute the found derivative into the initial equation


x2dydx=2xyx2(C(x)x22C(x)x3)=2xC(x)x2+cos(x)x^2\cdot\displaystyle\frac{dy}{dx}=-2xy\longrightarrow x^2\cdot\left(\frac{C'(x)}{x^2}-2\cdot\frac{C(x)}{x^3}\right)=-2x\cdot\frac{C(x)}{x^2}+\cos(x)\longrightarrow


C(x)2C(x)x=2C(x)x+cos(x)C'(x)-2\cdot\displaystyle\frac{C(x)}{x}=-2\cdot\displaystyle\frac{C(x)}{x}+\cos(x)\longrightarrow


C(x)=cos(x)C(x)=sin(x)+C1C'(x)=\cos(x)\longrightarrow\boxed{C(x)=\sin(x)+C_1}


Conclusion,


y(x)=sin(x)+C1x2y(x)=\displaystyle\frac{\sin(x)+C_1}{x^2}


It remains to determine the integration constant, for this we use the initial condition:


y(π)=00=C1+sin(π)π20=C1π2C1=0y(\pi)=0\longrightarrow0=\displaystyle\frac{C_1+\sin(\pi)}{\pi^2}\longrightarrow0=\displaystyle\frac{C_1}{\pi^2}\longrightarrow\boxed{C_1=0}


ANSWER


y(x)=sin(x)x2y(x)=\displaystyle\frac{\sin(x)}{x^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS