1 STEP: solve the homogeneous equation.
"\\left.x^2\\cdot\\displaystyle\\frac{dy}{dx}=-2xy\\right|\\cdot\\displaystyle\\frac{dx}{yx^2}\\longrightarrow\\quad\n\\displaystyle\\frac{dy}{y}=-2\\cdot\\displaystyle\\frac{dx}{x}\\longrightarrow\\quad"
"\\int\\displaystyle\\frac{dy}{y}=-2\\cdot\\int\\displaystyle\\frac{dx}{x}\\longrightarrow\\quad \\ln|y|=-2\\cdot\\ln|x|+\\ln|C|\\longrightarrow\\quad"
"\\boxed{y_{hom}(x)=\\frac{C}{x^2}}"
2 STEP: solve the inhomogeneous equation.
We use the constant variation method
"y(x)=\\displaystyle\\frac{C(x)}{x^2}\\longrightarrow\\boxed{\\frac{dy}{dx}=\\frac{C'(x)}{x^2}-2\\cdot\\frac{C(x)}{x^3}}"
Substitute the found derivative into the initial equation
"x^2\\cdot\\displaystyle\\frac{dy}{dx}=-2xy\\longrightarrow x^2\\cdot\\left(\\frac{C'(x)}{x^2}-2\\cdot\\frac{C(x)}{x^3}\\right)=-2x\\cdot\\frac{C(x)}{x^2}+\\cos(x)\\longrightarrow"
"C'(x)-2\\cdot\\displaystyle\\frac{C(x)}{x}=-2\\cdot\\displaystyle\\frac{C(x)}{x}+\\cos(x)\\longrightarrow"
"C'(x)=\\cos(x)\\longrightarrow\\boxed{C(x)=\\sin(x)+C_1}"
Conclusion,
"y(x)=\\displaystyle\\frac{\\sin(x)+C_1}{x^2}"
It remains to determine the integration constant, for this we use the initial condition:
"y(\\pi)=0\\longrightarrow0=\\displaystyle\\frac{C_1+\\sin(\\pi)}{\\pi^2}\\longrightarrow0=\\displaystyle\\frac{C_1}{\\pi^2}\\longrightarrow\\boxed{C_1=0}"
ANSWER
"y(x)=\\displaystyle\\frac{\\sin(x)}{x^2}"
Comments
Leave a comment