1 STEP: solve the homogeneous equation.
x 2 ⋅ d y d x = − 2 x y ∣ ⋅ d x y x 2 ⟶ d y y = − 2 ⋅ d x x ⟶ \left.x^2\cdot\displaystyle\frac{dy}{dx}=-2xy\right|\cdot\displaystyle\frac{dx}{yx^2}\longrightarrow\quad
\displaystyle\frac{dy}{y}=-2\cdot\displaystyle\frac{dx}{x}\longrightarrow\quad x 2 ⋅ d x d y = − 2 x y ∣ ∣ ⋅ y x 2 d x ⟶ y d y = − 2 ⋅ x d x ⟶
∫ d y y = − 2 ⋅ ∫ d x x ⟶ ln ∣ y ∣ = − 2 ⋅ ln ∣ x ∣ + ln ∣ C ∣ ⟶ \int\displaystyle\frac{dy}{y}=-2\cdot\int\displaystyle\frac{dx}{x}\longrightarrow\quad \ln|y|=-2\cdot\ln|x|+\ln|C|\longrightarrow\quad ∫ y d y = − 2 ⋅ ∫ x d x ⟶ ln ∣ y ∣ = − 2 ⋅ ln ∣ x ∣ + ln ∣ C ∣ ⟶
y h o m ( x ) = C x 2 \boxed{y_{hom}(x)=\frac{C}{x^2}} y h o m ( x ) = x 2 C
2 STEP: solve the inhomogeneous equation.
We use the constant variation method
y ( x ) = C ( x ) x 2 ⟶ d y d x = C ′ ( x ) x 2 − 2 ⋅ C ( x ) x 3 y(x)=\displaystyle\frac{C(x)}{x^2}\longrightarrow\boxed{\frac{dy}{dx}=\frac{C'(x)}{x^2}-2\cdot\frac{C(x)}{x^3}} y ( x ) = x 2 C ( x ) ⟶ d x d y = x 2 C ′ ( x ) − 2 ⋅ x 3 C ( x )
Substitute the found derivative into the initial equation
x 2 ⋅ d y d x = − 2 x y ⟶ x 2 ⋅ ( C ′ ( x ) x 2 − 2 ⋅ C ( x ) x 3 ) = − 2 x ⋅ C ( x ) x 2 + cos ( x ) ⟶ x^2\cdot\displaystyle\frac{dy}{dx}=-2xy\longrightarrow x^2\cdot\left(\frac{C'(x)}{x^2}-2\cdot\frac{C(x)}{x^3}\right)=-2x\cdot\frac{C(x)}{x^2}+\cos(x)\longrightarrow x 2 ⋅ d x d y = − 2 x y ⟶ x 2 ⋅ ( x 2 C ′ ( x ) − 2 ⋅ x 3 C ( x ) ) = − 2 x ⋅ x 2 C ( x ) + cos ( x ) ⟶
C ′ ( x ) − 2 ⋅ C ( x ) x = − 2 ⋅ C ( x ) x + cos ( x ) ⟶ C'(x)-2\cdot\displaystyle\frac{C(x)}{x}=-2\cdot\displaystyle\frac{C(x)}{x}+\cos(x)\longrightarrow C ′ ( x ) − 2 ⋅ x C ( x ) = − 2 ⋅ x C ( x ) + cos ( x ) ⟶
C ′ ( x ) = cos ( x ) ⟶ C ( x ) = sin ( x ) + C 1 C'(x)=\cos(x)\longrightarrow\boxed{C(x)=\sin(x)+C_1} C ′ ( x ) = cos ( x ) ⟶ C ( x ) = sin ( x ) + C 1
Conclusion,
y ( x ) = sin ( x ) + C 1 x 2 y(x)=\displaystyle\frac{\sin(x)+C_1}{x^2} y ( x ) = x 2 sin ( x ) + C 1
It remains to determine the integration constant, for this we use the initial condition:
y ( π ) = 0 ⟶ 0 = C 1 + sin ( π ) π 2 ⟶ 0 = C 1 π 2 ⟶ C 1 = 0 y(\pi)=0\longrightarrow0=\displaystyle\frac{C_1+\sin(\pi)}{\pi^2}\longrightarrow0=\displaystyle\frac{C_1}{\pi^2}\longrightarrow\boxed{C_1=0} y ( π ) = 0 ⟶ 0 = π 2 C 1 + sin ( π ) ⟶ 0 = π 2 C 1 ⟶ C 1 = 0
ANSWER
y ( x ) = sin ( x ) x 2 y(x)=\displaystyle\frac{\sin(x)}{x^2} y ( x ) = x 2 sin ( x )
Comments