Equation is separable:
"p^2-2px=2qy-q^2-1"
it follows that
"p^2-2px=a,\\ 2qy-q^2-1=a", for constant a
Solving the first equation for p
"p^2-2px-a=0"
using quadratic formula
"p_{12}=x\\pm\\sqrt{x^2+a}"
and the second equation
"q^2-2qy+1+a=0"
"q_{12}=y\\pm\\sqrt{y^2-1-a}"
from relation
"dz=pdx+qdy," where z is solution of the equation
"dz=(x\\pm\\sqrt{x^2+a})dx+(y\\pm\\sqrt{y^2-1-a})dy" (four possible combinations of signs + and -)
"z=\\int(x\\pm\\sqrt{x^2+a})dx+\\int(y\\pm\\sqrt{y^2-1-a})dy"
"z=\\frac{x^2+y^2}{2}\\pm\\int(\\sqrt{x^2+a})dx\\pm\\int(\\sqrt{y^2-1-a})dy"
"\\int(\\sqrt{x^2+a})dx=\\\\1\/2 (x \\sqrt{(a + x^2)} + a\\cdot log(x + \\sqrt{a + x^2}))+C_1"
"\\int(\\sqrt{y^2-1-a})dy=\\\\1\/2(y\\cdot\\sqrt{-1 - a + y^2} - (1 + a) log(y + \\sqrt{-1 - a + y^2}))+C_2"
"z=\\frac{x^2+y^2}{2}\\pm\\\\\n1\/2 (x \\sqrt{(a + x^2)} + a\\cdot log(x + \\sqrt{a + x^2}))\\pm\\\\\n1\/2(y\\cdot\\sqrt{-1 - a + y^2} - (1 + a) log(y + \\sqrt{-1 - a + y^2}))+b,"
a and b are real constants.
Answer:
"z=\\frac{x^2+y^2}{2}\\pm\\\\\n1\/2 (x \\sqrt{(a + x^2)} + a\\cdot log(x + \\sqrt{a + x^2}))\\pm\\\\\n1\/2(y\\cdot\\sqrt{-1 - a + y^2} - (1 + a) log(y + \\sqrt{-1 - a + y^2}))+b,"
a and b are real constants.
Comments
Leave a comment