Equation is separable:
p 2 − 2 p x = 2 q y − q 2 − 1 p^2-2px=2qy-q^2-1 p 2 − 2 p x = 2 q y − q 2 − 1
it follows that
p 2 − 2 p x = a , 2 q y − q 2 − 1 = a p^2-2px=a,\ 2qy-q^2-1=a p 2 − 2 p x = a , 2 q y − q 2 − 1 = a , for constant a
Solving the first equation for p
p 2 − 2 p x − a = 0 p^2-2px-a=0 p 2 − 2 p x − a = 0
using quadratic formula
p 12 = x ± x 2 + a p_{12}=x\pm\sqrt{x^2+a} p 12 = x ± x 2 + a
and the second equation
q 2 − 2 q y + 1 + a = 0 q^2-2qy+1+a=0 q 2 − 2 q y + 1 + a = 0
q 12 = y ± y 2 − 1 − a q_{12}=y\pm\sqrt{y^2-1-a} q 12 = y ± y 2 − 1 − a
from relation
d z = p d x + q d y , dz=pdx+qdy, d z = p d x + q d y , where z is solution of the equation
d z = ( x ± x 2 + a ) d x + ( y ± y 2 − 1 − a ) d y dz=(x\pm\sqrt{x^2+a})dx+(y\pm\sqrt{y^2-1-a})dy d z = ( x ± x 2 + a ) d x + ( y ± y 2 − 1 − a ) d y (four possible combinations of signs + and -)
z = ∫ ( x ± x 2 + a ) d x + ∫ ( y ± y 2 − 1 − a ) d y z=\int(x\pm\sqrt{x^2+a})dx+\int(y\pm\sqrt{y^2-1-a})dy z = ∫ ( x ± x 2 + a ) d x + ∫ ( y ± y 2 − 1 − a ) d y
z = x 2 + y 2 2 ± ∫ ( x 2 + a ) d x ± ∫ ( y 2 − 1 − a ) d y z=\frac{x^2+y^2}{2}\pm\int(\sqrt{x^2+a})dx\pm\int(\sqrt{y^2-1-a})dy z = 2 x 2 + y 2 ± ∫ ( x 2 + a ) d x ± ∫ ( y 2 − 1 − a ) d y
∫ ( x 2 + a ) d x = 1 / 2 ( x ( a + x 2 ) + a ⋅ l o g ( x + a + x 2 ) ) + C 1 \int(\sqrt{x^2+a})dx=\\1/2 (x \sqrt{(a + x^2)} + a\cdot log(x + \sqrt{a + x^2}))+C_1 ∫ ( x 2 + a ) d x = 1/2 ( x ( a + x 2 ) + a ⋅ l o g ( x + a + x 2 )) + C 1
∫ ( y 2 − 1 − a ) d y = 1 / 2 ( y ⋅ − 1 − a + y 2 − ( 1 + a ) l o g ( y + − 1 − a + y 2 ) ) + C 2 \int(\sqrt{y^2-1-a})dy=\\1/2(y\cdot\sqrt{-1 - a + y^2} - (1 + a) log(y + \sqrt{-1 - a + y^2}))+C_2 ∫ ( y 2 − 1 − a ) d y = 1/2 ( y ⋅ − 1 − a + y 2 − ( 1 + a ) l o g ( y + − 1 − a + y 2 )) + C 2
z = x 2 + y 2 2 ± 1 / 2 ( x ( a + x 2 ) + a ⋅ l o g ( x + a + x 2 ) ) ± 1 / 2 ( y ⋅ − 1 − a + y 2 − ( 1 + a ) l o g ( y + − 1 − a + y 2 ) ) + b , z=\frac{x^2+y^2}{2}\pm\\
1/2 (x \sqrt{(a + x^2)} + a\cdot log(x + \sqrt{a + x^2}))\pm\\
1/2(y\cdot\sqrt{-1 - a + y^2} - (1 + a) log(y + \sqrt{-1 - a + y^2}))+b, z = 2 x 2 + y 2 ± 1/2 ( x ( a + x 2 ) + a ⋅ l o g ( x + a + x 2 )) ± 1/2 ( y ⋅ − 1 − a + y 2 − ( 1 + a ) l o g ( y + − 1 − a + y 2 )) + b ,
a and b are real constants.
Answer:
z = x 2 + y 2 2 ± 1 / 2 ( x ( a + x 2 ) + a ⋅ l o g ( x + a + x 2 ) ) ± 1 / 2 ( y ⋅ − 1 − a + y 2 − ( 1 + a ) l o g ( y + − 1 − a + y 2 ) ) + b , z=\frac{x^2+y^2}{2}\pm\\
1/2 (x \sqrt{(a + x^2)} + a\cdot log(x + \sqrt{a + x^2}))\pm\\
1/2(y\cdot\sqrt{-1 - a + y^2} - (1 + a) log(y + \sqrt{-1 - a + y^2}))+b, z = 2 x 2 + y 2 ± 1/2 ( x ( a + x 2 ) + a ⋅ l o g ( x + a + x 2 )) ± 1/2 ( y ⋅ − 1 − a + y 2 − ( 1 + a ) l o g ( y + − 1 − a + y 2 )) + b ,
a and b are real constants.
Comments