Question #92905
Find the integral surface of the linear PDE
x(y²+z)p - y(x²+z)q = (x²-y²)z , which contains the straight line x+y =0 , z=1.
1
Expert's answer
2019-08-27T12:00:10-0400

Auxiliary equations are

dxx(y2+z)=dyy(x2+z)=dzz(x2y2)\frac{dx}{x(y^2+z)}=\frac{dy}{-y(x^2+z)}=\frac{dz}{z(x^2-y^2)}

xdx+ydydzx2(y2+z)y2(x2+z)z(x2y2)=xdx+ydydz0\frac{xdx+ydy-dz}{x^2(y^2+z)-y^2(x^2+z)-z(x^2-y^2)}=\frac{xdx+ydy-dz}{0} (1)

dxx+dyy+dzzy2+z(x2+z)+(x2y2)=dxx+dyy+dzz0\frac{\frac{dx}{x}+\frac{dy}{y}+\frac{dz}{z}}{y^2+z-(x^2+z)+(x^2-y^2)}= \frac{\frac{dx}{x}+\frac{dy}{y}+\frac{dz}{z}}{0} (2)

from (1)

x2+y22z=C1x^2+y^2-2z=C_1 (3)

from (2)

log(xyz)=C2, or xyz=C3log(xyz)=C_2,\ or \ xyz=C_3 (4)

parametric equation of straight line is

(x=t,y=t,z=1)(x=t,y=-t,z=1) (5)

On substituting (5) in (3) and (4) we get

2t22=C1, t2=C32t^2-2=C_1,\ -t^2=C_3

Eliminating t

2C32=C1, orF(C1,C3)=C1+2C3+2=0-2C_3-2=C_1,\ or F(C_1,C_3)=C_1+2C_3+2=0

Therefor

x2+y22z+2xyz+2=0x^2+y^2-2z+2xyz+2=0 is integral surface, which contains the straight line.

Answer: x^2+y^2-2z+2xyz+2=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS