A vibrating string of unit length {L = 1 and with fixed ends} satisfies the following:
PDE:∂t2∂2u=c2∂x2∂2uBC:u(0,t)=u(1,t)=0IC:u(x,0)=0,ut(x,0)={x1−x, 0<=x<1/2, 1/2<=x<1 where c - const (is the speed of propagation of the wave in the string).
Separation of variables for this equation allows you to get a solution:
u(x,t)=n=1∑∞[Ancos(nπct)sin(nπx)+Bnsin(nπct)sin(nπx)](1) where
An=20∫1u(x,0)sin(nπx)dx=0(2)
Bn=nπc20∫1ut(x,0)sin(nπx)dx=nπc2(0∫1/2xsin(nπx)dx+1/2∫1(1−x)sin(nπx)dx)=nπc2((n2π2sin(nπx)−(nπx)cos(nπx))0∣1/2−nπcos(nπx)1/2∣1−(n2π2sin(nπx)−(nπx)cos(nπx))1/2∣1)=n3π3c2(2sin(2nπ)−sin(nπ))=n3π3c4sin(2nπ), n=1,2,3,...(3) from (1),(2) and (3):
u(x,t)=n=1∑∞n3π3c4sin(2nπ)sin(nπct)sin(nπx), n=1,2,3,...
Comments