A vibrating string of unit length {L = 1 and with fixed ends} satisfies the following:
where c - const (is the speed of propagation of the wave in the string).
Separation of variables for this equation allows you to get a solution:
where
"B_n=\\frac{2}{n\\pi c}\\underset{0}{\\overset{1}{\\int}}u_t(x,0) sin(n\\pi x) dx= \\\\\n \\frac{2}{n\\pi c} \\Bigg(\\underset{0}{\\overset{1\/2}{\\int}}x sin(n\\pi x) dx+\\underset{1\/2}{\\overset{1}{\\int}}(1-x) sin(n\\pi x) dx \\Bigg)=\\\\\n \\frac{2}{n\\pi c} \\Bigg( (\\frac{sin(n\\pi x)-(n\\pi x)cos(n\\pi x)}{n^2\\pi ^2})\\underset{0}{\\overset{1\/2}{|}}-\\frac{cos(n\\pi x)}{n\\pi}\\underset{1\/2}{\\overset{1}{|}} -\\\\\n(\\frac{sin(n\\pi x)-(n\\pi x)cos(n\\pi x)}{n^2\\pi ^2})\\underset{1\/2}{\\overset{1}{|}} \\Bigg)=\\\\\n\\frac{2}{n^3\\pi^3 c} \\Bigg( 2sin(\\frac{n\\pi}{2})-sin(n\\pi)\\Bigg) =\\\\\n\\frac{4}{n^3\\pi^3 c} sin(\\frac{n\\pi}{2}), \\space n=1,2,3,... \\qquad (3)"
from (1),(2) and (3):
Comments
Leave a comment