Question #92952
Find the deflection of the fixed end vibrating string of unit length corresponding to zero initial deflection and u(x) given below as the initial velocity.

x , 0 ≤ x < 1/2
u(x) =
1-x , 1/2 ≤ x <1
1
Expert's answer
2019-09-02T10:37:18-0400

Let w(x,t)w(x,t) be the function describing deflection of the string. The function satisfies wave equation

wtt=a2wxxw_{tt}=a^2w_{xx}

and from the condition of the question we have

w(0,t)=w(1,t)=0w(0,t)=w(1,t)=0

as the ends are fixed and initial conditions are


w(x,0)=0w(x,0)=0


wt(x,0)=u(x)w_t(x,0)=u(x)

In order to solve the PDE we’ll use separation of variables, so w(x,t)=X(x)T(t)w(x,t)=X(x)T(t). If we put this in the equation, we’ll obtain Ta2T=XX=λ\frac{T''}{a^2T}=\frac{X''}{X}=-\lambda. So we have Sturm-Liouville problem {X+λX=0X(0)=X(1)=0\begin{cases} X''+\lambda X=0\\ X(0)=X(1)=0 \end{cases}. The problem has infinitely many non-trivial solutions Xn=sin(πnx)X_n=\sin(\pi n x) and eigenvalues λn=π2n2\lambda_n=\pi^2n^2. Then Tn+λna2Tn=0T_n''+ \lambda_n a^2 T_n=0 hence Tn=C1ncos(πnat)+C2nsin(πnat)T_n=C_{1n}\cos(\pi n at)+C_{2n}\sin(\pi n a t) where C1n,C2nC_{1n}, C_{2n} are arbitrary constants. So

w(x,t)=n=1Tn(t)Xn(x)=n=1(C1ncos(πnat)+C2nsin(πnat))sin(πnx)w(x,t)=\sum_{n=1}^{\infty}T_n(t)X_n(x)=\sum_{n=1}^{\infty}(C_{1n}\cos(\pi n at)+C_{2n}\sin(\pi n a t))\sin(\pi n x)


In order to find C1n,C2nC_{1n}, C_{2n} we’ll use initial conditions. w(x,0)=n=1C1nsin(πnx)=0w(x,0)=\sum_{n=1}^{\infty}C_{1n}\sin(\pi n x)=0, so all C1n=0C_{1n}=0

wt(x,0)=n=1C2nπnasin(πnx)=u(x)w_t(x,0)=\sum_{n=1}^{\infty}C_{2n}\pi n a\sin(\pi n x)=u(x)


let’s expand u(x)u(x) into Fourier sine series on interval 0<x<10<x<1.


u(x)=n=1bnsin(πnx)u(x)=\sum_{n=1}^{\infty}b_n \sin(\pi n x)


bn=201u(x)sin(πnx)dx=4sin(πn2)π2n2b_n=2 \int_0^{1} u(x) \sin(\pi n x)\, dx=\frac{4\sin(\frac{\pi n}{2})}{\pi^2 n^2}

So


u(x)=n=14sin(πn2)π2n2sin(πnx)u(x)=\sum_{n=1}^{\infty}\frac{4\sin(\frac{\pi n}{2})}{\pi^2 n^2} \sin(\pi n x)

and equating coefficients in the sums we obtain C2n=4sin(πn2)π3n3aC_{2n}=\frac{4\sin(\frac{\pi n}{2})}{\pi^3n^3a}. So


w(x,t)=n=14sin(πn2)π3n3asin(πnat)sin(πnx)w(x,t)=\sum_{n=1}^{\infty}\frac{4\sin(\frac{\pi n}{2})}{\pi^3n^3a}\sin(\pi n a t)\sin(\pi n x)

or it can be rewritten as 


w(x,t)=n=1(1)n+14π3(2n1)3asin(π(2n1)at)sin(π(2n1)x)w(x,t)=\sum_{n=1}^{\infty}(-1)^{n+1}\frac{4}{\pi^3(2n-1)^3a}\sin(\pi (2n-1) a t)\sin(\pi (2n-1) x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS