Let w(x,t) be the function describing deflection of the string. The function satisfies wave equation
wtt=a2wxx and from the condition of the question we have
w(0,t)=w(1,t)=0 as the ends are fixed and initial conditions are
w(x,0)=0
wt(x,0)=u(x)
In order to solve the PDE we’ll use separation of variables, so w(x,t)=X(x)T(t). If we put this in the equation, we’ll obtain a2TT′′=XX′′=−λ. So we have Sturm-Liouville problem {X′′+λX=0X(0)=X(1)=0. The problem has infinitely many non-trivial solutions Xn=sin(πnx) and eigenvalues λn=π2n2. Then Tn′′+λna2Tn=0 hence Tn=C1ncos(πnat)+C2nsin(πnat) where C1n,C2n are arbitrary constants. So
w(x,t)=n=1∑∞Tn(t)Xn(x)=n=1∑∞(C1ncos(πnat)+C2nsin(πnat))sin(πnx)
In order to find C1n,C2n we’ll use initial conditions. w(x,0)=∑n=1∞C1nsin(πnx)=0, so all C1n=0
wt(x,0)=n=1∑∞C2nπnasin(πnx)=u(x)
let’s expand u(x) into Fourier sine series on interval 0<x<1.
u(x)=n=1∑∞bnsin(πnx)
bn=2∫01u(x)sin(πnx)dx=π2n24sin(2πn)
So
u(x)=n=1∑∞π2n24sin(2πn)sin(πnx)
and equating coefficients in the sums we obtain C2n=π3n3a4sin(2πn). So
w(x,t)=n=1∑∞π3n3a4sin(2πn)sin(πnat)sin(πnx)or it can be rewritten as
w(x,t)=n=1∑∞(−1)n+1π3(2n−1)3a4sin(π(2n−1)at)sin(π(2n−1)x)
Comments