Let's assume that the solution will take the form
u = φ ( x ) G ( t ) u=\varphi(x)G(t) u = φ ( x ) G ( t )
Substituting this from in the equation, will lead us to
φ ( x ) G ′ ( t ) = φ ′ ′ ( x ) G ( t ) \varphi(x)G'(t)=\varphi''(x)G(t) φ ( x ) G ′ ( t ) = φ ′′ ( x ) G ( t )
G ′ ( t ) G ( t ) = φ ′ ′ ( x ) φ ( x ) \frac{G'(t)}{G(t)}=\frac{\varphi''(x)}{\varphi(x)} G ( t ) G ′ ( t ) = φ ( x ) φ ′′ ( x )
Since the left hand side depends only of t and the right hand side only of x, the both sides can be equal only if they are equal to some constant.
Let's denote this constant as − λ -\lambda − λ
Then
G ′ ( t ) G ( t ) = φ ′ ′ ( x ) φ ( x ) = − λ \frac{G'(t)}{G(t)}=\frac{\varphi''(x)}{\varphi(x)}=-\lambda G ( t ) G ′ ( t ) = φ ( x ) φ ′′ ( x ) = − λ
Therefore we obtain two ordinary differential equations
G ′ + λ G = 0 G'+\lambda G=0 G ′ + λ G = 0
φ ′ ′ + λ φ = 0 \varphi''+\lambda\varphi=0 φ ′′ + λ φ = 0
Using boundary condition will lead us to
φ ( 0 ) = φ ( L ) = 0 \varphi(0)=\varphi(L)=0 φ ( 0 ) = φ ( L ) = 0
The general solution of the equation is
φ = c 1 cos ( λ x ) + c 2 sin ( λ x ) \varphi=c_1\cos(\sqrt{\lambda}x)+c_2\sin(\sqrt{\lambda}x) φ = c 1 cos ( λ x ) + c 2 sin ( λ x )
Applying the first boundary condition gives us
φ ( 0 ) = c 1 = 0 \varphi(0)=c_1=0 φ ( 0 ) = c 1 = 0
Applying the second boundary condition, and using the above result, gives us
φ ( L ) = c 2 sin ( λ L ) = 0 \varphi(L)=c_2\sin(\sqrt{\lambda}L)=0 φ ( L ) = c 2 sin ( λ L ) = 0
We will only have a non-trivial solution, if sin ( λ L ) = 0 \sin(\sqrt{\lambda}L)=0 sin ( λ L ) = 0 , λ ≠ 0. \lambda \not =0. λ = 0.
Hence
λ n = ( π n L ) 2 , n ∈ Z , n ≠ 0. \lambda_n=\left(\frac{\pi n}{L}\right)^2,\quad n\in \Zeta, n \not =0. λ n = ( L πn ) 2 , n ∈ Z , n = 0.
Then for G(t) we will have
G ′ = − λ n G G'=-\lambda_nG G ′ = − λ n G
This is a linear first order differential equation and its solution is
G = B n e − λ n t G=B_ne^{-\lambda_nt } G = B n e − λ n t
Hence the solution is
u = ∑ n = 1 ∞ B n e − λ n t sin λ x u=\sum\limits_{n=1}^{\infty}B_ne^{-\lambda_nt }\sin\sqrt{\lambda}x u = n = 1 ∑ ∞ B n e − λ n t sin λ x
The initial condition will lead us to
u ( x , 0 ) = ∑ n = 1 ∞ B n sin λ x = x ( L − x ) u(x,0)=\sum\limits_{n=1}^{\infty}B_n\sin\sqrt{\lambda}x=x(L-x) u ( x , 0 ) = n = 1 ∑ ∞ B n sin λ x = x ( L − x )
which is the sine Fourier series of x ( L − x ) x(L-x) x ( L − x )
It's coefficients can be obtained using the formula
B n = 2 L ∫ 0 L x ( L − x ) s i n ( π n L ) x d x = − 2 L 2 ( − 2 + 2 c o s ( n π ) + n π s i n ( n π ) ) n 3 π 3 = − 4 L 2 ( ( − 1 ) n − 1 ) n 3 π 3 B_n= \frac{2}{L}\int\limits_{0}^{L}x(L-x)sin(\frac{\pi n}{L})xdx=-\frac{2 L^2 (-2 + 2 cos(n π) + n π sin(n π))}{n^3 π^3}=-\frac{4 L^2((-1)^n-1)}{n^3 π^3} B n = L 2 0 ∫ L x ( L − x ) s in ( L πn ) x d x = − n 3 π 3 2 L 2 ( − 2 + 2 cos ( nπ ) + nπ s in ( nπ )) = − n 3 π 3 4 L 2 (( − 1 ) n − 1 )
Hence
B 2 n = 0 B_{2n}=0 B 2 n = 0
B 2 n − 1 = 8 L 2 ( 2 n − 1 ) 3 π 3 B_{2n-1}=\frac{8 L^2}{(2n-1)^3 π^3} B 2 n − 1 = ( 2 n − 1 ) 3 π 3 8 L 2
Therefore we obtain the final form of the function
u = ∑ n = 1 ∞ 8 L 2 ( 2 n − 1 ) 3 π 3 e − λ 2 n − 1 t sin λ 2 n − 1 x u=\sum\limits_{n=1}^{\infty}\frac{8 L^2}{(2n-1)^3 π^3}e^{-\lambda_{2n-1}t }\sin\sqrt{\lambda_{2n-1}}x u = n = 1 ∑ ∞ ( 2 n − 1 ) 3 π 3 8 L 2 e − λ 2 n − 1 t sin λ 2 n − 1 x
Comments