Question #93096
Solve the differential equation

(yz+z²) dx - xz dy + xy dz = 0
1
Expert's answer
2019-08-26T09:00:45-0400

Here

P=yz+z2,Q=xz,R=xyP= yz+z^2 ,Q= -xz ,R= xydxyz+z2=dyxz=dzxy{dx \over yz+z^2}={dy \over -xz}={dz \over xy}

From 2nd and 3rd fraction, we get 


dyz=dzy{dy \over -z}={dz \over y}d(y2+z2)=0d(y^2+z^2)=0

Integrating, we get 


y2+z2=c1y^2+z^2=c_1

If we take


P1=x,Q1=z,R1=zP_1=x, Q_1=z,R_1=-z

then


PP1+QQ1+RR1=xyz+xz2xz2xyz=0PP_1+QQ_1+RR_1=xyz+xz^2-xz^2-xyz=0

Thus for the given system of equations, we have 


dxyz+z2=dyxz=dzxy=xdx+zdyzdz0{dx \over yz+z^2}={dy \over -xz}={dz \over xy}={xdx+zdy-zdz \over 0}

dxx=dyz=dzz{dx \over x}={dy \over z}={dz \over -z}

From 1st and 2nd fraction, we get 


dxx=dzz{dx \over x}={dz \over -z}d(lnx+lnz)=0d(\ln|x|+\ln|z|)=0

Integrating, we get 


ln(xz)=lnc\ln(|x||z|)=\ln c^*xz=c2|x||z|=c_2

Let F be an arbitrary differentiable function, then the solution of the partial differential equation is


F(y2+z2,xz)=0F(y^2+z^2,|x||z|)=0




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS