Let x=et, then
ln(x)=t
Using chain rule:
∂t∂z=∂x∂zdtdx=∂x∂zet
∂x∂z=∂t∂ze−t
∂t2∂2z=(∂x∂zet)t′=∂x2∂2zdtdxet+∂x∂zet=∂x2∂2ze2t+∂t∂z
d∂2∂2z=(∂t2∂2z−∂t∂z)e−2t
x2∂x2∂2z+x∂x∂z=e2t(∂t2∂2z−∂t∂z)e−2t+et∂t∂ze−t=∂t2∂2z−∂t∂z+∂t∂z=∂t2∂2z
Similarly after substitution y=es we have
y2d∂2∂2z+y∂y∂z=∂s2∂2z
And equation becomes:
∂t2∂2z−∂s2∂2z=t
Now introduce new variables ξ=t+s, η=t−s
z=z(ξ,η)
Using chain rule again:
∂t∂z=∂ξ∂z∂t∂ξ+∂η∂z∂t∂η=∂ξ∂z+∂η∂z
∂s∂z=∂ξ∂z∂s∂ξ+∂η∂z∂s∂η=∂ξ∂z−∂η∂z
∂t2∂2z=∂ξ2∂2z∂t∂ξ+∂ξ∂η∂2z∂t∂η+∂ξ∂η∂2z∂t∂ξ+∂η2∂2z∂t∂η=
∂ξ2∂2z+2∂ξ∂η∂2z+∂η2∂2z∂t∂η
∂s2∂2z=∂ξ2∂2z∂s∂ξ+∂ξ∂η∂2z∂s∂η−(∂ξ∂η∂2z∂s∂ξ+∂η2∂2z∂s∂η)=
∂ξ2∂2z−∂ξ∂η∂2z−(∂ξ∂η∂2z−∂η2∂2z)=∂ξ2∂2z−2∂ξ∂η∂2z+∂η2∂2z)
∂t2∂2z−∂s2∂2z=4∂ξ∂η∂2z
t=(t+s)/2+(t−s)/2=2ξ+η
4∂ξ∂η∂2z=2ξ+η
∂ξ∂η∂2z=8ξ+η
Integrating:
∂η∂z=∫∂ξ∂η∂2z∂ξ=∫8ξ+ηdξ=ξ2/16+ηξ/8+g(η)
z=∫(ξ2/16+ηξ/8+g(η))dη=ξ2η/16+η2ξ/16+G(η)+F(ξ),
where F and G are arbitrary twice differentiable functions,
and G is antiderivative of g
Now use reverse substitutions t=ln(x), s=ln(y)
we have:
ξ=t+s=ln(x)+ln(y)=ln(xy),η=t−s=ln(x)−ln(y)=ln(x/y)
z=16ln(xy)ln(x/y)(ln(xy)+ln(x/y))+G(ln(x/y)+F(ln(xy))=8ln(xy)ln(x/y)(ln(x))+G(ln(x/y)+F(ln(xy))
Answer: z=8ln(xy)ln(x/y)(ln(x))+G(ln(x/y)+F(ln(xy)), where F and G are arbitrary twice differentiable functions.
Comments