Question #93158
Solve the Partial differential equation

x² d²z/dx² - y² d²z/dy² + x dz/dx - y dz/dy = ln(x)
1
Expert's answer
2019-08-26T09:18:42-0400

Let x=etx=e^t, then

ln(x)=tln(x)=t

Using chain rule:

zt=zxdxdt=zxet\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x}\frac{dx}{dt}=\frac{\partial z}{\partial x}e^t

zx=ztet\frac{\partial z}{\partial x}=\frac{\partial z}{\partial t}e^{-t}

2zt2=(zxet)t=2zx2dxdtet+zxet=2zx2e2t+zt\frac{\partial ^2z}{\partial t^2}=(\frac{\partial z}{\partial x}e^t)'_t=\frac{\partial ^2z}{\partial x^2}\frac{dx}{dt}e^t+\frac{\partial z}{\partial x}e^t=\\ \frac{\partial ^2z}{\partial x^2}e^{2t}+\frac{\partial z}{\partial t}

2zd2=(2zt2zt)e2t\frac{\partial ^2z}{d\partial ^2}=(\frac{\partial ^2z}{\partial t^2}-\frac{\partial z}{\partial t})e^{-2t}


x22zx2+xzx=e2t(2zt2zt)e2t+etztet=2zt2zt+zt=2zt2x^2\frac{\partial ^2z}{\partial x^2}+x\frac{\partial z}{\partial x}=e^{2t}(\frac{\partial ^2z}{\partial t^2}-\frac{\partial z}{\partial t})e^{-2t}+e^t\frac{\partial z}{\partial t}e^{-t}=\\ \frac{\partial ^2z}{\partial t^2}-\frac{\partial z}{\partial t}+\frac{\partial z}{\partial t}=\frac{\partial ^2z}{\partial t^2}

Similarly after substitution y=esy=e^s we have

y22zd2+yzy=2zs2y^2\frac{\partial ^2z}{d\partial ^2}+y\frac{\partial z}{\partial y}=\frac{\partial ^2z}{\partial s^2}

And equation becomes:

2zt22zs2=t\frac{\partial ^2z}{\partial t^2}-\frac{\partial ^2z}{\partial s^2}=t

Now introduce new variables ξ=t+s, η=ts\xi=t+s,\ \eta=t-s

z=z(ξ,η)z=z(\xi,\eta)

Using chain rule again:

zt=zξξt+zηηt=zξ+zη\frac{\partial z}{\partial t}=\frac{\partial z}{\partial \xi}\frac{\partial \xi}{\partial t}+\frac{\partial z}{\partial \eta}\frac{\partial \eta}{\partial t}= \frac{\partial z}{\partial \xi}+\frac{\partial z}{\partial \eta}

zs=zξξs+zηηs=zξzη\frac{\partial z}{\partial s}=\frac{\partial z}{\partial \xi}\frac{\partial \xi}{\partial s}+\frac{\partial z}{\partial \eta}\frac{\partial \eta}{\partial s}= \frac{\partial z}{\partial \xi}-\frac{\partial z}{\partial \eta}

2zt2=2zξ2ξt+2zξηηt+2zξηξt+2zη2ηt=\frac{\partial ^2z}{\partial t^2}=\frac{\partial ^2z}{\partial \xi^2}\frac{\partial \xi}{\partial t}+\frac{\partial ^2z}{\partial \xi \partial \eta}\frac{\partial \eta}{\partial t}+\frac{\partial ^2z}{\partial \xi \partial \eta}\frac{\partial \xi}{\partial t}+\frac{\partial ^2z}{\partial \eta^2}\frac{\partial \eta}{\partial t}=

2zξ2+22zξη+2zη2ηt\frac{\partial ^2z}{\partial \xi^2}+2\frac{\partial ^2z}{\partial \xi \partial \eta}+\frac{\partial ^2z}{\partial \eta^2}\frac{\partial \eta}{\partial t}

2zs2=2zξ2ξs+2zξηηs(2zξηξs+2zη2ηs)=\frac{\partial ^2z}{\partial s^2}=\frac{\partial ^2z}{\partial \xi^2}\frac{\partial \xi}{\partial s}+\frac{\partial ^2z}{\partial \xi \partial \eta}\frac{\partial \eta}{\partial s}-(\frac{\partial ^2z}{\partial \xi \partial \eta}\frac{\partial \xi}{\partial s}+\frac{\partial ^2z}{\partial \eta^2}\frac{\partial \eta}{\partial s})=

2zξ22zξη(2zξη2zη2)=2zξ222zξη+2zη2)\frac{\partial ^2z}{\partial \xi^2}-\frac{\partial ^2z}{\partial \xi \partial \eta}-(\frac{\partial ^2z}{\partial \xi \partial \eta}-\frac{\partial ^2z}{\partial \eta^2})= \frac{\partial ^2z}{\partial \xi^2}-2\frac{\partial ^2z}{\partial \xi \partial \eta}+\frac{\partial ^2z}{\partial \eta^2})

2zt22zs2=42zξη\frac{\partial ^2z}{\partial t^2}-\frac{\partial ^2z}{\partial s^2}=4\frac{\partial ^2z}{\partial \xi \partial \eta}

t=(t+s)/2+(ts)/2=ξ+η2t=(t+s)/2+(t-s)/2=\frac{\xi+\eta}{2}

42zξη=ξ+η24\frac{\partial ^2z}{\partial \xi \partial \eta}=\frac{\xi+\eta}{2}

2zξη=ξ+η8\frac{\partial ^2z}{\partial \xi \partial \eta}=\frac{\xi+\eta}{8}

Integrating:

zη=2zξηξ=ξ+η8dξ=ξ2/16+ηξ/8+g(η)\frac {\partial z}{\partial \eta}=\int \frac{\partial ^2z}{\partial \xi \partial \eta}\partial \xi=\int \frac{\xi+\eta}{8}d\xi=\xi^2/16+\eta\xi/8+g(\eta)

z=(ξ2/16+ηξ/8+g(η))dη=ξ2η/16+η2ξ/16+G(η)+F(ξ)z=\int (\xi^2/16+\eta\xi/8+g(\eta))d\eta=\\ \xi^2\eta/16+\eta^2\xi/16+G(\eta)+F(\xi),

where F and G are arbitrary twice differentiable functions,

and G is antiderivative of g

Now use reverse substitutions t=ln(x), s=ln(y)t=ln(x),\ s=ln(y)

we have:

ξ=t+s=ln(x)+ln(y)=ln(xy),η=ts=ln(x)ln(y)=ln(x/y)\xi=t+s=ln(x)+ln(y)=ln(xy),\\ \eta=t-s=ln(x)-ln(y)=ln(x/y)

z=ln(xy)ln(x/y)16(ln(xy)+ln(x/y))+G(ln(x/y)+F(ln(xy))=ln(xy)ln(x/y)8(ln(x))+G(ln(x/y)+F(ln(xy))z=\frac{ln(xy)ln(x/y)}{16}(ln(xy)+ln(x/y))+G(ln(x/y)+F(ln(xy))=\\ \frac{ln(xy)ln(x/y)}{8}(ln(x))+G(ln(x/y)+F(ln(xy))

Answer: z=ln(xy)ln(x/y)8(ln(x))+G(ln(x/y)+F(ln(xy))z=\frac{ln(xy)ln(x/y)}{8}(ln(x))+G(ln(x/y)+F(ln(xy)), where F and G are arbitrary twice differentiable functions.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS