Question #93285
(D² + 3DD '+ 2D'²) z = x+y
1
Expert's answer
2019-08-26T05:00:11-0400

SOLUTION

Let us use some known facts. Let the given differential equation be


F(D,D)=f(x,y)F(D,D')=f(x,y)

Factorize F(D,D)F(D,D') into linear factors. Then use the following results:

 Corresponding to each non-repeated factor (bDaDc)\left(bD-aD'-c\right) , the part of C.F. is taken as


exp(cxb)φ(by+ax),ifb0\exp\left(\frac{cx}{b}\right)\cdot\varphi(by+ax),\quad if\quad b\neq0

In our case,


(D2+3DD+2D2)z=x+yz(x,y)=C.F.+P.I.\left(D^2+3DD'+2D'^2\right)z=x+y\longrightarrow z(x,y)=C.F.+P.I.

0 STEP: We factor the expression

(D2+3DD+2D2)=(D2+DD)+(2DD+2D2)=\left(D^2+3DD'+2D'^2\right)=\left(D^2+DD'\right)+\left(2DD'+2D'^2\right)=

=D(D+D)+2D(D+D)=(D+D)(D+2D)=D\left(D+D'\right)+2D'\left(D+D'\right)=\left(D+D'\right)\left(D+2D'\right)

Conclusion,


(D2+3DD+2D2)z=(D+D)(D+2D)z\boxed{\left(D^2+3DD'+2D'^2\right)z=\left(D+D'\right)\left(D+2D'\right)z}

1 STEP: Let find C.F.


{(D+D)z(bDaDc)z{a=1b=1c=0\left\{\begin{array}{c} \left(D+D'\right)z\\ \left(bD-aD'-c\right)z \end{array}\right.\rightarrow \left\{\begin{array}{c} a=-1\\ b=1\\ c=0 \end{array}\right.\rightarrow

(C.F.)1=exp(0x1)φ(1y+(1)x)(C.F.)_1=\exp\left(\frac{0\cdot x}{1}\right)\cdot\varphi(1\cdot y+(-1)x)



(C.F.)1=φ1(yx),whereφ1isarbitraryfunction\boxed{(C.F.)_1=\varphi_1(y-x),\quad where\,\,\,\varphi_1\,\,\,is \,\,\,arbitrary\,\,\,function}

{(D+2D)z(bDaDc)z{a=2b=1c=0\left\{\begin{array}{c} \left(D+2D'\right)z\\ \left(bD-aD'-c\right)z \end{array}\right.\rightarrow \left\{\begin{array}{c} a=-2\\ b=1\\ c=0 \end{array}\right.\rightarrow


(C.F.)2=exp(0x1)φ(1y+(2)x)(C.F.)_2=\exp\left(\frac{0\cdot x}{1}\right)\cdot\varphi(1\cdot y+(-2)x)


(C.F.)2=φ2(y2x),whereφ2isarbitraryfunction\boxed{(C.F.)_2=\varphi_2(y-2x),\quad where\,\,\,\varphi_2\,\,\,is \,\,\,arbitrary\,\,\,function}

Then,


C.F.=(C.F.)1+(C.F.)2=φ1(yx)+φ2(y2x)C.F.=(C.F.)_1+(C.F.)_2=\varphi_1(y-x)+\varphi_2(y-2x)

2 STEP: Let find P.I.


P.I.=1(D+D)(D+2D)(x+y)=1D(1+DD)D(1+2DD)(x+y)=P.I.=\frac{1}{(D+D')(D+2D')}(x+y)=\frac{1}{D\left(1+\frac{D'}{D}\right)D\left(1+\frac{2D'}{D}\right)}(x+y)=

=1D2(1+DD)1(1+2DD)1(x+y)==\frac{1}{D^2}\left(1+\frac{D'}{D}\right)^{-1}\left(1+\frac{2D'}{D}\right)^{-1}(x+y)=

=1D2[1DD+][12DD+](x+y)==\frac{1}{D^2}\left[1-\frac{D'}{D}+\ldots\right]\left[1-\frac{2D'}{D}+\ldots\right](x+y)=


=[11+x=1x+x2x3+,x<1]==\left[\frac{1}{1+x}=1-x+x^2-x^3+\ldots,|x|<1\right]=

=1D2[1DD2DD+2D2D2+](x+y)==\frac{1}{D^2}\left[1-\frac{D'}{D}-\frac{2D'}{D}+\frac{2D'^2}{D^2}+\ldots\right](x+y)=


=1D2[13DD+2D2D2+](x+y)==\frac{1}{D^2}\left[1-\frac{3D'}{D}+\frac{2D'^2}{D^2}+\ldots\right](x+y)=

=1D2[(x+y)3D(y(x+y))+2D2(22y(x+y))+]==\frac{1}{D^2}\left[(x+y)-\frac{3}{D}\left(\frac{\partial}{\partial y}(x+y)\right)+\frac{2}{D^2}\left(\frac{\partial^2}{\partial^2 y}(x+y)\right)+\ldots\right]=

=1D2[(x+y)3D(1)+2D2(0)+]==\frac{1}{D^2}\left[(x+y)-\frac{3}{D}\left(1\right)+\frac{2}{D^2}\left(0\right)+\ldots\right]=


=1D2[(x+y)3D(1)]=(1Ddx)==\frac{1}{D^2}\left[(x+y)-\frac{3}{D}\left(1\right)\right]=\left(\frac{1}{D}\equiv\int dx\right)=

=1D2[(x+y)31dx]=1D2[(x+y)3x]==\frac{1}{D^2}\left[(x+y)-3\int1dx\right]=\frac{1}{D^2}\left[(x+y)-3x\right]=


=1D[(y2x)dx]=(xyx2)dx=x2y2x33=\frac{1}{D}\left[\int(y-2x)dx\right]=\int\left(xy-x^2\right)dx=\frac{x^2y}{2}-\frac{x^3}{3}

P.I.=x2y2x33\boxed{P.I.=\frac{x^2y}{2}-\frac{x^3}{3}}

Conclusion,


z(x,y)=C.F.+P.I.=φ1(yx)+φ2(y2x)+x2y2x33z(x,y)=C.F.+P.I.=\varphi_1(y-x)+\varphi_2(y-2x)+\frac{x^2y}{2}-\frac{x^3}{3}

ANSWER

{z(x,y)=φ1(yx)+φ2(y2x)+x2y2x33whereφ1andφ2arearbitraryfunctions\left\{\begin{array}{c} z(x,y)=\varphi_1(y-x)+\varphi_2(y-2x)+\displaystyle\frac{x^2y}{2}-\frac{x^3}{3}\\[0.4cm] where\,\,\,\varphi_1\,\,\,and\,\,\,\varphi_2\,\,\,are\,\,\,arbitrary\,\,\,functions \end{array}\right.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
16.07.21, 00:11

Dear Priya, please use the panel for submitting a new question.


Priya
06.07.21, 20:22

For abelian group, identity mapping is: (a)one-one (b)onto (C)homomorphism (d)all of the above

LATEST TUTORIALS
APPROVED BY CLIENTS