SOLUTION
Let us use some known facts. Let the given differential equation be
F(D,D′)=f(x,y) Factorize F(D,D′) into linear factors. Then use the following results:
Corresponding to each non-repeated factor (bD−aD′−c) , the part of C.F. is taken as
exp(bcx)⋅φ(by+ax),ifb=0 In our case,
(D2+3DD′+2D′2)z=x+y⟶z(x,y)=C.F.+P.I. 0 STEP: We factor the expression
(D2+3DD′+2D′2)=(D2+DD′)+(2DD′+2D′2)=
=D(D+D′)+2D′(D+D′)=(D+D′)(D+2D′) Conclusion,
(D2+3DD′+2D′2)z=(D+D′)(D+2D′)z 1 STEP: Let find C.F.
{(D+D′)z(bD−aD′−c)z→⎩⎨⎧a=−1b=1c=0→
(C.F.)1=exp(10⋅x)⋅φ(1⋅y+(−1)x)
(C.F.)1=φ1(y−x),whereφ1isarbitraryfunction
{(D+2D′)z(bD−aD′−c)z→⎩⎨⎧a=−2b=1c=0→
(C.F.)2=exp(10⋅x)⋅φ(1⋅y+(−2)x)
(C.F.)2=φ2(y−2x),whereφ2isarbitraryfunction Then,
C.F.=(C.F.)1+(C.F.)2=φ1(y−x)+φ2(y−2x) 2 STEP: Let find P.I.
P.I.=(D+D′)(D+2D′)1(x+y)=D(1+DD′)D(1+D2D′)1(x+y)=
=D21(1+DD′)−1(1+D2D′)−1(x+y)=
=D21[1−DD′+…][1−D2D′+…](x+y)=
=[1+x1=1−x+x2−x3+…,∣x∣<1]=
=D21[1−DD′−D2D′+D22D′2+…](x+y)=
=D21[1−D3D′+D22D′2+…](x+y)=
=D21[(x+y)−D3(∂y∂(x+y))+D22(∂2y∂2(x+y))+…]=
=D21[(x+y)−D3(1)+D22(0)+…]=
=D21[(x+y)−D3(1)]=(D1≡∫dx)=
=D21[(x+y)−3∫1dx]=D21[(x+y)−3x]=
=D1[∫(y−2x)dx]=∫(xy−x2)dx=2x2y−3x3
P.I.=2x2y−3x3 Conclusion,
z(x,y)=C.F.+P.I.=φ1(y−x)+φ2(y−2x)+2x2y−3x3 ANSWER
⎩⎨⎧z(x,y)=φ1(y−x)+φ2(y−2x)+2x2y−3x3whereφ1andφ2arearbitraryfunctions
Comments
Dear Priya, please use the panel for submitting a new question.
For abelian group, identity mapping is: (a)one-one (b)onto (C)homomorphism (d)all of the above