SOLUTION
Let us use some known facts. Let the given differential equation be
F ( D , D ′ ) = f ( x , y ) F(D,D')=f(x,y) F ( D , D ′ ) = f ( x , y ) Factorize F ( D , D ′ ) F(D,D') F ( D , D ′ ) into linear factors. Then use the following results:
Corresponding to each non-repeated factor ( b D − a D ′ − c ) \left(bD-aD'-c\right) ( b D − a D ′ − c ) , the part of C.F. is taken as
exp ( c x b ) ⋅ φ ( b y + a x ) , i f b ≠ 0 \exp\left(\frac{cx}{b}\right)\cdot\varphi(by+ax),\quad if\quad b\neq0 exp ( b c x ) ⋅ φ ( b y + a x ) , i f b = 0 In our case,
( D 2 + 3 D D ′ + 2 D ′ 2 ) z = x + y ⟶ z ( x , y ) = C . F . + P . I . \left(D^2+3DD'+2D'^2\right)z=x+y\longrightarrow z(x,y)=C.F.+P.I. ( D 2 + 3 D D ′ + 2 D ′2 ) z = x + y ⟶ z ( x , y ) = C . F . + P . I . 0 STEP: We factor the expression
( D 2 + 3 D D ′ + 2 D ′ 2 ) = ( D 2 + D D ′ ) + ( 2 D D ′ + 2 D ′ 2 ) = \left(D^2+3DD'+2D'^2\right)=\left(D^2+DD'\right)+\left(2DD'+2D'^2\right)= ( D 2 + 3 D D ′ + 2 D ′2 ) = ( D 2 + D D ′ ) + ( 2 D D ′ + 2 D ′2 ) =
= D ( D + D ′ ) + 2 D ′ ( D + D ′ ) = ( D + D ′ ) ( D + 2 D ′ ) =D\left(D+D'\right)+2D'\left(D+D'\right)=\left(D+D'\right)\left(D+2D'\right) = D ( D + D ′ ) + 2 D ′ ( D + D ′ ) = ( D + D ′ ) ( D + 2 D ′ ) Conclusion,
( D 2 + 3 D D ′ + 2 D ′ 2 ) z = ( D + D ′ ) ( D + 2 D ′ ) z \boxed{\left(D^2+3DD'+2D'^2\right)z=\left(D+D'\right)\left(D+2D'\right)z} ( D 2 + 3 D D ′ + 2 D ′2 ) z = ( D + D ′ ) ( D + 2 D ′ ) z 1 STEP: Let find C.F.
{ ( D + D ′ ) z ( b D − a D ′ − c ) z → { a = − 1 b = 1 c = 0 → \left\{\begin{array}{c}
\left(D+D'\right)z\\
\left(bD-aD'-c\right)z
\end{array}\right.\rightarrow
\left\{\begin{array}{c}
a=-1\\
b=1\\
c=0
\end{array}\right.\rightarrow { ( D + D ′ ) z ( b D − a D ′ − c ) z → ⎩ ⎨ ⎧ a = − 1 b = 1 c = 0 →
( C . F . ) 1 = exp ( 0 ⋅ x 1 ) ⋅ φ ( 1 ⋅ y + ( − 1 ) x ) (C.F.)_1=\exp\left(\frac{0\cdot x}{1}\right)\cdot\varphi(1\cdot y+(-1)x) ( C . F . ) 1 = exp ( 1 0 ⋅ x ) ⋅ φ ( 1 ⋅ y + ( − 1 ) x )
( C . F . ) 1 = φ 1 ( y − x ) , w h e r e φ 1 i s a r b i t r a r y f u n c t i o n \boxed{(C.F.)_1=\varphi_1(y-x),\quad where\,\,\,\varphi_1\,\,\,is \,\,\,arbitrary\,\,\,function} ( C . F . ) 1 = φ 1 ( y − x ) , w h ere φ 1 i s a r bi t r a ry f u n c t i o n
{ ( D + 2 D ′ ) z ( b D − a D ′ − c ) z → { a = − 2 b = 1 c = 0 → \left\{\begin{array}{c}
\left(D+2D'\right)z\\
\left(bD-aD'-c\right)z
\end{array}\right.\rightarrow
\left\{\begin{array}{c}
a=-2\\
b=1\\
c=0
\end{array}\right.\rightarrow { ( D + 2 D ′ ) z ( b D − a D ′ − c ) z → ⎩ ⎨ ⎧ a = − 2 b = 1 c = 0 →
( C . F . ) 2 = exp ( 0 ⋅ x 1 ) ⋅ φ ( 1 ⋅ y + ( − 2 ) x ) (C.F.)_2=\exp\left(\frac{0\cdot x}{1}\right)\cdot\varphi(1\cdot y+(-2)x) ( C . F . ) 2 = exp ( 1 0 ⋅ x ) ⋅ φ ( 1 ⋅ y + ( − 2 ) x )
( C . F . ) 2 = φ 2 ( y − 2 x ) , w h e r e φ 2 i s a r b i t r a r y f u n c t i o n \boxed{(C.F.)_2=\varphi_2(y-2x),\quad where\,\,\,\varphi_2\,\,\,is \,\,\,arbitrary\,\,\,function} ( C . F . ) 2 = φ 2 ( y − 2 x ) , w h ere φ 2 i s a r bi t r a ry f u n c t i o n Then,
C . F . = ( C . F . ) 1 + ( C . F . ) 2 = φ 1 ( y − x ) + φ 2 ( y − 2 x ) C.F.=(C.F.)_1+(C.F.)_2=\varphi_1(y-x)+\varphi_2(y-2x) C . F . = ( C . F . ) 1 + ( C . F . ) 2 = φ 1 ( y − x ) + φ 2 ( y − 2 x ) 2 STEP: Let find P.I.
P . I . = 1 ( D + D ′ ) ( D + 2 D ′ ) ( x + y ) = 1 D ( 1 + D ′ D ) D ( 1 + 2 D ′ D ) ( x + y ) = P.I.=\frac{1}{(D+D')(D+2D')}(x+y)=\frac{1}{D\left(1+\frac{D'}{D}\right)D\left(1+\frac{2D'}{D}\right)}(x+y)= P . I . = ( D + D ′ ) ( D + 2 D ′ ) 1 ( x + y ) = D ( 1 + D D ′ ) D ( 1 + D 2 D ′ ) 1 ( x + y ) =
= 1 D 2 ( 1 + D ′ D ) − 1 ( 1 + 2 D ′ D ) − 1 ( x + y ) = =\frac{1}{D^2}\left(1+\frac{D'}{D}\right)^{-1}\left(1+\frac{2D'}{D}\right)^{-1}(x+y)= = D 2 1 ( 1 + D D ′ ) − 1 ( 1 + D 2 D ′ ) − 1 ( x + y ) =
= 1 D 2 [ 1 − D ′ D + … ] [ 1 − 2 D ′ D + … ] ( x + y ) = =\frac{1}{D^2}\left[1-\frac{D'}{D}+\ldots\right]\left[1-\frac{2D'}{D}+\ldots\right](x+y)= = D 2 1 [ 1 − D D ′ + … ] [ 1 − D 2 D ′ + … ] ( x + y ) =
= [ 1 1 + x = 1 − x + x 2 − x 3 + … , ∣ x ∣ < 1 ] = =\left[\frac{1}{1+x}=1-x+x^2-x^3+\ldots,|x|<1\right]= = [ 1 + x 1 = 1 − x + x 2 − x 3 + … , ∣ x ∣ < 1 ] =
= 1 D 2 [ 1 − D ′ D − 2 D ′ D + 2 D ′ 2 D 2 + … ] ( x + y ) = =\frac{1}{D^2}\left[1-\frac{D'}{D}-\frac{2D'}{D}+\frac{2D'^2}{D^2}+\ldots\right](x+y)= = D 2 1 [ 1 − D D ′ − D 2 D ′ + D 2 2 D ′2 + … ] ( x + y ) =
= 1 D 2 [ 1 − 3 D ′ D + 2 D ′ 2 D 2 + … ] ( x + y ) = =\frac{1}{D^2}\left[1-\frac{3D'}{D}+\frac{2D'^2}{D^2}+\ldots\right](x+y)= = D 2 1 [ 1 − D 3 D ′ + D 2 2 D ′2 + … ] ( x + y ) =
= 1 D 2 [ ( x + y ) − 3 D ( ∂ ∂ y ( x + y ) ) + 2 D 2 ( ∂ 2 ∂ 2 y ( x + y ) ) + … ] = =\frac{1}{D^2}\left[(x+y)-\frac{3}{D}\left(\frac{\partial}{\partial y}(x+y)\right)+\frac{2}{D^2}\left(\frac{\partial^2}{\partial^2 y}(x+y)\right)+\ldots\right]= = D 2 1 [ ( x + y ) − D 3 ( ∂ y ∂ ( x + y ) ) + D 2 2 ( ∂ 2 y ∂ 2 ( x + y ) ) + … ] =
= 1 D 2 [ ( x + y ) − 3 D ( 1 ) + 2 D 2 ( 0 ) + … ] = =\frac{1}{D^2}\left[(x+y)-\frac{3}{D}\left(1\right)+\frac{2}{D^2}\left(0\right)+\ldots\right]= = D 2 1 [ ( x + y ) − D 3 ( 1 ) + D 2 2 ( 0 ) + … ] =
= 1 D 2 [ ( x + y ) − 3 D ( 1 ) ] = ( 1 D ≡ ∫ d x ) = =\frac{1}{D^2}\left[(x+y)-\frac{3}{D}\left(1\right)\right]=\left(\frac{1}{D}\equiv\int dx\right)= = D 2 1 [ ( x + y ) − D 3 ( 1 ) ] = ( D 1 ≡ ∫ d x ) =
= 1 D 2 [ ( x + y ) − 3 ∫ 1 d x ] = 1 D 2 [ ( x + y ) − 3 x ] = =\frac{1}{D^2}\left[(x+y)-3\int1dx\right]=\frac{1}{D^2}\left[(x+y)-3x\right]= = D 2 1 [ ( x + y ) − 3 ∫ 1 d x ] = D 2 1 [ ( x + y ) − 3 x ] =
= 1 D [ ∫ ( y − 2 x ) d x ] = ∫ ( x y − x 2 ) d x = x 2 y 2 − x 3 3 =\frac{1}{D}\left[\int(y-2x)dx\right]=\int\left(xy-x^2\right)dx=\frac{x^2y}{2}-\frac{x^3}{3} = D 1 [ ∫ ( y − 2 x ) d x ] = ∫ ( x y − x 2 ) d x = 2 x 2 y − 3 x 3
P . I . = x 2 y 2 − x 3 3 \boxed{P.I.=\frac{x^2y}{2}-\frac{x^3}{3}} P . I . = 2 x 2 y − 3 x 3 Conclusion,
z ( x , y ) = C . F . + P . I . = φ 1 ( y − x ) + φ 2 ( y − 2 x ) + x 2 y 2 − x 3 3 z(x,y)=C.F.+P.I.=\varphi_1(y-x)+\varphi_2(y-2x)+\frac{x^2y}{2}-\frac{x^3}{3} z ( x , y ) = C . F . + P . I . = φ 1 ( y − x ) + φ 2 ( y − 2 x ) + 2 x 2 y − 3 x 3 ANSWER
{ z ( x , y ) = φ 1 ( y − x ) + φ 2 ( y − 2 x ) + x 2 y 2 − x 3 3 w h e r e φ 1 a n d φ 2 a r e a r b i t r a r y f u n c t i o n s \left\{\begin{array}{c}
z(x,y)=\varphi_1(y-x)+\varphi_2(y-2x)+\displaystyle\frac{x^2y}{2}-\frac{x^3}{3}\\[0.4cm]
where\,\,\,\varphi_1\,\,\,and\,\,\,\varphi_2\,\,\,are\,\,\,arbitrary\,\,\,functions
\end{array}\right. ⎩ ⎨ ⎧ z ( x , y ) = φ 1 ( y − x ) + φ 2 ( y − 2 x ) + 2 x 2 y − 3 x 3 w h ere φ 1 an d φ 2 a re a r bi t r a ry f u n c t i o n s
Comments
Dear Priya, please use the panel for submitting a new question.
For abelian group, identity mapping is: (a)one-one (b)onto (C)homomorphism (d)all of the above