(D^2-3D+2)y=e^x/1+e^x
Find solution of the associated homogeneous equation:
Characteristic (auxiliary) equation is
"(r-1)(r-2)=0"
"r_1=1, r_2=2"
The general solution of the associated homogeneous equation is
Variation of parameters
"c_1'e^x+c_2'e^{2x}=0"
"y'=c_1e^x+2c_2e^{2x}"
"y''=c_1'e^x+c_1e^x+2c_2'e^{2x}+4c_2e^{2x}"
Substitute
"-3c_1e^x-6c_2e^{2x}+2c_1e^x+2c_2e^{2x}=\\dfrac{e^x}{1+e^x}"
We have
"c_1'e^x+2c_2'e^{2x}=\\dfrac{e^x}{1+e^x}"
Then
"c_2'e^{x}=\\dfrac{1}{1+e^x}"
Or
"c_2'=\\dfrac{e^{-x}}{1+e^x}"
Integrate
"=-\\int dx+ \\int \\dfrac{e^x}{1+e^x}dx=-x+\\ln(e^x+1)"
"c_2=\\int \\dfrac{e^{-x}}{1+e^x}dx"
"e^x=u=>du=e^xdx=>dx=\\dfrac{du}{u}"
"\\dfrac{1}{u^2(1+u)}=\\dfrac{A}{u}+\\dfrac{B}{u^2}+\\dfrac{C}{1+u}"
"=\\dfrac{Au(1+u)+B(1+u)+Cu^2}{u^2(1+u)}"
"u=0: B=1"
"u=-1: C=1"
"u=1:2A+2B+C=1=>A=-1"
"c_2=\\int \\dfrac{e^{-x}}{1+e^x}dx=\\int \\dfrac{du}{u^2(1+u)}"
"=-\\int \\dfrac{du}{u}+\\int \\dfrac{du}{u^2}+\\int \\dfrac{du}{1+u}"
"=-\\ln |u|-\\dfrac{1}{u}+\\ln(|1+u|)"
"=-x-e^{-x}+\\ln(1+e^x)"
The particular solution of the non homogeneous differential equation is
"-xe^{2x}-e^{x}+e^{2x}\\ln(1+e^x)"
The general solution of the non homogeneous differential equation is
"-xe^{2x}-e^{x}+e^{2x}\\ln(1+e^x)"
Comments
Leave a comment