Answer to Question #288033 in Differential Equations for Abhishek

Question #288033

(D^2-3D+2)y=e^x/1+e^x

1
Expert's answer
2022-01-17T16:11:47-0500

Find solution of the associated homogeneous equation:


(D23D+2)y=0(D^2-3D+2)y=0

Characteristic (auxiliary) equation is


r23r+2=0r^2-3r+2=0

(r1)(r2)=0(r-1)(r-2)=0

r1=1,r2=2r_1=1, r_2=2

The general solution of the associated homogeneous equation is


yh=c1ex+c2e2xy_h=c_1e^x+c_2e^{2x}

Variation of parameters


y=c1ex+c1ex+c2e2x+2c2e2xy'=c_1'e^x+c_1e^x+c_2'e^{2x}+2c_2e^{2x}

c1ex+c2e2x=0c_1'e^x+c_2'e^{2x}=0

y=c1ex+2c2e2xy'=c_1e^x+2c_2e^{2x}

y=c1ex+c1ex+2c2e2x+4c2e2xy''=c_1'e^x+c_1e^x+2c_2'e^{2x}+4c_2e^{2x}

Substitute


c1ex+c1ex+2c2e2x+4c2e2xc_1'e^x+c_1e^x+2c_2'e^{2x}+4c_2e^{2x}

3c1ex6c2e2x+2c1ex+2c2e2x=ex1+ex-3c_1e^x-6c_2e^{2x}+2c_1e^x+2c_2e^{2x}=\dfrac{e^x}{1+e^x}

We have


c1ex+c2e2x=0c_1'e^x+c_2'e^{2x}=0

c1ex+2c2e2x=ex1+exc_1'e^x+2c_2'e^{2x}=\dfrac{e^x}{1+e^x}

Then


c1=c2exc_1'=-c_2'e^x

c2ex=11+exc_2'e^{x}=\dfrac{1}{1+e^x}

Or


c1=11+exc_1'=-\dfrac{1}{1+e^x}

c2=ex1+exc_2'=\dfrac{e^{-x}}{1+e^x}

Integrate


c1=11+exdx=1+exex1+exdxc_1=-\int \dfrac{1}{1+e^x}dx=-\int \dfrac{1+e^x-e^x}{1+e^x}dx

=dx+ex1+exdx=x+ln(ex+1)=-\int dx+ \int \dfrac{e^x}{1+e^x}dx=-x+\ln(e^x+1)

c2=ex1+exdxc_2=\int \dfrac{e^{-x}}{1+e^x}dx

ex=u=>du=exdx=>dx=duue^x=u=>du=e^xdx=>dx=\dfrac{du}{u}


c2=ex1+exdx=duu2(1+u)c_2=\int \dfrac{e^{-x}}{1+e^x}dx=\int \dfrac{du}{u^2(1+u)}

1u2(1+u)=Au+Bu2+C1+u\dfrac{1}{u^2(1+u)}=\dfrac{A}{u}+\dfrac{B}{u^2}+\dfrac{C}{1+u}

=Au(1+u)+B(1+u)+Cu2u2(1+u)=\dfrac{Au(1+u)+B(1+u)+Cu^2}{u^2(1+u)}

u=0:B=1u=0: B=1

u=1:C=1u=-1: C=1

u=1:2A+2B+C=1=>A=1u=1:2A+2B+C=1=>A=-1

c2=ex1+exdx=duu2(1+u)c_2=\int \dfrac{e^{-x}}{1+e^x}dx=\int \dfrac{du}{u^2(1+u)}

=duu+duu2+du1+u=-\int \dfrac{du}{u}+\int \dfrac{du}{u^2}+\int \dfrac{du}{1+u}

=lnu1u+ln(1+u)=-\ln |u|-\dfrac{1}{u}+\ln(|1+u|)

=xex+ln(1+ex)=-x-e^{-x}+\ln(1+e^x)

The particular solution of the non homogeneous differential equation is


yp=xex+exln(ex+1)y_p=-xe^x+e^x\ln(e^x+1)

xe2xex+e2xln(1+ex)-xe^{2x}-e^{x}+e^{2x}\ln(1+e^x)

The general solution of the non homogeneous differential equation is


y=c1ex+c2e2xxex+exln(ex+1)y=c_1e^x+c_2e^{2x}-xe^x+e^x\ln(e^x+1)

xe2xex+e2xln(1+ex)-xe^{2x}-e^{x}+e^{2x}\ln(1+e^x)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment