Find solution of the associated homogeneous equation:
(D2−3D+2)y=0 Characteristic (auxiliary) equation is
r2−3r+2=0
(r−1)(r−2)=0
r1=1,r2=2 The general solution of the associated homogeneous equation is
yh=c1ex+c2e2x Variation of parameters
y′=c1′ex+c1ex+c2′e2x+2c2e2x
c1′ex+c2′e2x=0
y′=c1ex+2c2e2x
y′′=c1′ex+c1ex+2c2′e2x+4c2e2x Substitute
c1′ex+c1ex+2c2′e2x+4c2e2x
−3c1ex−6c2e2x+2c1ex+2c2e2x=1+exex We have
c1′ex+c2′e2x=0
c1′ex+2c2′e2x=1+exex Then
c1′=−c2′ex
c2′ex=1+ex1 Or
c1′=−1+ex1
c2′=1+exe−x Integrate
c1=−∫1+ex1dx=−∫1+ex1+ex−exdx
=−∫dx+∫1+exexdx=−x+ln(ex+1)
c2=∫1+exe−xdx ex=u=>du=exdx=>dx=udu
c2=∫1+exe−xdx=∫u2(1+u)du
u2(1+u)1=uA+u2B+1+uC
=u2(1+u)Au(1+u)+B(1+u)+Cu2
u=0:B=1
u=−1:C=1
u=1:2A+2B+C=1=>A=−1
c2=∫1+exe−xdx=∫u2(1+u)du
=−∫udu+∫u2du+∫1+udu
=−ln∣u∣−u1+ln(∣1+u∣)
=−x−e−x+ln(1+ex) The particular solution of the non homogeneous differential equation is
yp=−xex+exln(ex+1)
−xe2x−ex+e2xln(1+ex) The general solution of the non homogeneous differential equation is
y=c1ex+c2e2x−xex+exln(ex+1)
−xe2x−ex+e2xln(1+ex)
Comments
Leave a comment