1)(2x+1)2y′′−2(2x+1)y′−12y=xln(2x+1)2x+1=ez, ⇒z=ln(2x+1), x=2ez−1∴z′=2x+12⇒y′=Dy.z′, D=dzd⇒(2x+1)y′=2Dy, (2x+1)2y′′=4D(D−1)y ∴4D(D−1)y−4Dy−12y=z(2ez−1⇒(4D2−8D−12)y=zez/2−z/2Now, 4D2−8D−12=0⇒D=3,−1∴CF=c1e3z+c2e−z
PI=2(4D2−8D−12)zez−z=8(D−3)(D+1)zez−z=8(D−3)1×e−z∫(zez−z)ezdz=8(D−3)1×(ze2z/2−e2z/4−zez+ez)=81×e3z∫(ze2z/2−e2z/4−zez+ez)e−3zdz=−81(4zez−3z+92)
Soln:-
y=CF+PI=c1e3z+c2e−z−81(4zez−3z+92)=c1(2x+1)3+c2(2x+1)−1−81(4ln(2x+1)(2x+1)−32x+1+92)
2)(x+2)2y′′−(x+2)y′+y=3x+4x+2=ez, ⇒z=ln(x+2), x=ez−2∴z′=x+21y′=Dy.z′, D=dzd⇒(x+2)y′=Dy, (x+2)2y′′=D(D−1)y ∴D(D−1)y−Dy+y=3ez−2⇒(D2−2D+1)y=3ez−2Now, D2−2D+1=0⇒D=1∴CF=cez
PI=(D−1)23ez−2=ez∫(∫(3ez−2)×e−zdz)dz=23z2ez−2 Solution :y=CF+PI=cez+23z2ez−2=−2+(c+23z2)ez=(c+23(ln(x+2))2)(x+2)−2
Comments