Question #287366
  1. (2x+1)^2y''-2(2x+1)y'-12y=xlog(2x+1)
  2. (x+2)^2y''-(x+2)y'+y=3x+4 these two r from legendres
1
Expert's answer
2022-01-17T07:05:37-0500

1)(2x+1)2yβ€²β€²βˆ’2(2x+1)yβ€²βˆ’12y=xln(2x+1)2x+1=ez,  β‡’z=ln(2x+1),  x=ezβˆ’12∴zβ€²=22x+1β‡’yβ€²=Dy.zβ€²,      D=ddzβ‡’(2x+1)yβ€²=2Dy,  (2x+1)2yβ€²β€²=4D(Dβˆ’1)y βˆ΄4D(Dβˆ’1)yβˆ’4Dyβˆ’12y=z(ezβˆ’12β‡’(4D2βˆ’8Dβˆ’12)y=zez/2βˆ’z/2Now, 4D2βˆ’8Dβˆ’12=0β‡’D=3,βˆ’1∴CF=c1e3z+c2eβˆ’z1)\\ (2x+1)^2y''-2(2x+1)y'-12y=xln(2x+1)\\ 2x+1=e^z,~~\\ \Rightarrow z=ln(2x+1),~~ x=\dfrac{e^z-1}{2}\\ \therefore z'=\dfrac{2}{2x+1}\\ \Rightarrow y'=Dy.z',~~~~~~D=\dfrac{d}{dz}\\ \Rightarrow (2x+1)y'=2Dy, ~~(2x+1)^2y''=4D(D-1)y\\~\\ \therefore 4D(D-1)y-4Dy-12y=z(\frac{e^z-1}{2}\\ \Rightarrow (4D^2-8D-12)y=ze^z/2-z/2\\ \text{Now, }\\ 4D^2-8D-12=0 \Rightarrow D=3,-1\\ \therefore CF=c_1e^{3z}+c_2e^{-z}\\

 PI=zezβˆ’z2(4D2βˆ’8Dβˆ’12)=zezβˆ’z8(Dβˆ’3)(D+1)=18(Dβˆ’3)Γ—eβˆ’z∫(zezβˆ’z)ezdz=18(Dβˆ’3)Γ—(ze2z/2βˆ’e2z/4βˆ’zez+ez)=18Γ—e3z∫(ze2z/2βˆ’e2z/4βˆ’zez+ez)eβˆ’3zdz=βˆ’18(zez4βˆ’z3+29)\\~\\ PI=\dfrac{ze^z-z}{2(4D^2-8D-12)}=\dfrac{ze^z-z}{8(D-3)(D+1)}\\ =\dfrac{1}{8(D-3)}\times e^{-z}\int(ze^z-z)e^z dz\\ =\dfrac{1}{8(D-3)}\times (ze^{2z}/2-e^{2z}/4-ze^z+e^z)\\ =\dfrac{1}{8}\times e^{3z}\int (ze^{2z}/2-e^{2z}/4-ze^z+e^z)e^{-3z}dz\\ =-\dfrac{1}{8}(\dfrac{ze^z}{4}-\dfrac{z}{3}+\dfrac{2}{9})

Soln:-

y=CF+PI=c1e3z+c2eβˆ’zβˆ’18(zez4βˆ’z3+29)=c1(2x+1)3+c2(2x+1)βˆ’1βˆ’18(ln(2x+1)(2x+1)4βˆ’2x+13+29)y=CF+PI=c_1e^{3z}+c_2e^{-z}-\dfrac{1}{8}(\dfrac{ze^z}{4}-\dfrac{z}{3}+\dfrac{2}{9})\\ =c_1(2x+1)^3+c_2(2x+1)^{-1}\\-\dfrac{1}{8}(\dfrac{ln(2x+1)(2x+1)}{4}-\dfrac{2x+1}{3}+\dfrac{2}{9})



2)(x+2)2yβ€²β€²βˆ’(x+2)yβ€²+y=3x+4x+2=ez,  β‡’z=ln(x+2),  x=ezβˆ’2∴zβ€²=1x+2yβ€²=Dy.zβ€²,      D=ddzβ‡’(x+2)yβ€²=Dy,  (x+2)2yβ€²β€²=D(Dβˆ’1)y βˆ΄D(Dβˆ’1)yβˆ’Dy+y=3ezβˆ’2β‡’(D2βˆ’2D+1)y=3ezβˆ’2Now, D2βˆ’2D+1=0β‡’D=1∴CF=cez2)\\ (x+2)^2y''-(x+2)y'+y=3x+4\\ x+2=e^z,~~\\ \Rightarrow z=ln(x+2),~~ x=e^z-2\\ \therefore z'=\dfrac{1}{x+2}\\ y'=Dy.z',~~~~~~D=\dfrac{d}{dz}\\ \Rightarrow (x+2)y'=Dy, ~~(x+2)^2y''=D(D-1)y\\~\\ \therefore D(D-1)y-Dy+y=3e^z-2\\ \Rightarrow (D^2-2D+1)y=3e^z-2\\ \text{Now, }\\ D^2-2D+1=0 \Rightarrow D=1\\ \therefore CF=ce^{z}


PI=3ezβˆ’2(Dβˆ’1)2=ez∫(∫(3ezβˆ’2)Γ—eβˆ’zdz)dz=32z2ezβˆ’2    Solution :y=CF+PI=cez+32z2ezβˆ’2=βˆ’2+(c+32z2)ez=(c+32(ln(x+2))2)(x+2)βˆ’2PI=\dfrac{3e^z-2}{(D-1)^2}=e^z\int(\int(3e^z-2)\times e^{-z}dz)dz\\ =\dfrac{3}{2}z^2e^z-2\\ ~~\\~~\\ \text{Solution :}\\ y=CF+PI=ce^z+\dfrac{3}{2}z^2e^z-2\\=-2+(c+\dfrac{3}{2}z^2)e^z\\ =(c+\dfrac{3}{2}(ln(x+2))^2)(x+2)-2




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS