1)(2x+1)2yβ²β²β2(2x+1)yβ²β12y=xln(2x+1)2x+1=ez, βz=ln(2x+1), x=2ezβ1ββ΄zβ²=2x+12ββyβ²=Dy.zβ², D=dzdββ(2x+1)yβ²=2Dy, (2x+1)2yβ²β²=4D(Dβ1)y β΄4D(Dβ1)yβ4Dyβ12y=z(2ezβ1ββ(4D2β8Dβ12)y=zez/2βz/2Now, 4D2β8Dβ12=0βD=3,β1β΄CF=c1βe3z+c2βeβz
PI=2(4D2β8Dβ12)zezβzβ=8(Dβ3)(D+1)zezβzβ=8(Dβ3)1βΓeβzβ«(zezβz)ezdz=8(Dβ3)1βΓ(ze2z/2βe2z/4βzez+ez)=81βΓe3zβ«(ze2z/2βe2z/4βzez+ez)eβ3zdz=β81β(4zezββ3zβ+92β)
Soln:-
y=CF+PI=c1βe3z+c2βeβzβ81β(4zezββ3zβ+92β)=c1β(2x+1)3+c2β(2x+1)β1β81β(4ln(2x+1)(2x+1)ββ32x+1β+92β)
2)(x+2)2yβ²β²β(x+2)yβ²+y=3x+4x+2=ez, βz=ln(x+2), x=ezβ2β΄zβ²=x+21βyβ²=Dy.zβ², D=dzdββ(x+2)yβ²=Dy, (x+2)2yβ²β²=D(Dβ1)y β΄D(Dβ1)yβDy+y=3ezβ2β(D2β2D+1)y=3ezβ2Now, D2β2D+1=0βD=1β΄CF=cez
PI=(Dβ1)23ezβ2β=ezβ«(β«(3ezβ2)Γeβzdz)dz=23βz2ezβ2 Solution :y=CF+PI=cez+23βz2ezβ2=β2+(c+23βz2)ez=(c+23β(ln(x+2))2)(x+2)β2
Comments