y′′=v,y′′′=v′
v′+2v/x=(x+sin(lnx))/x3
μ(x)=e∫2/xdx=x2
multiply both sides by μ(x) :
x2v′+2xv=(x+sin(lnx))/x
dxd(x2v)=(x+sin(lnx))/x
x2v=∫(x+sin(lnx))/xdx
x2v=x−cos(lnx)+c1
v=y′′=(x−cos(lnx)+c1)/x2
y′=∫(x−cos(lnx)+c1)/x2dx
∫x2cos(lnx)dx=∣u=lnx,dx=xdu∣=∫e−ucosudu=
=−e−ucosu−∫e−ucosudu=−e−ucosu+−e−usinu−∫e−ucosudu
∫e−ucosudu=2cos(lnu)−sin(lnxu)=2xcos(lnx)−sin(lnx)
y′=2xcos(lnx)−sin(lnx)+lnx−c1/x+c2
y=∫(2xcos(lnx)−sin(lnx)+lnx−c1/x+c2)dx
∫xcos(lnx)−sin(lnx)dx=∫(cos(lnx)−sin(lnx))d(lnx)=sin(lnx)+cos(lnx)
y=2cos(lnx)+sin(lnx)−x+xlnx−c1lnx+c2x+c3
Comments