Question #287618

x^3y''' + 2x^2y'' = x + sin(lnx)


1
Expert's answer
2022-01-19T08:18:51-0500

y=v,y=vy''=v,y'''=v'

v+2v/x=(x+sin(lnx))/x3v'+2v/x=(x+sin(lnx))/x^3


μ(x)=e2/xdx=x2\mu(x)=e^{\int 2/x dx}=x^2

multiply both sides by μ(x)\mu(x) :

x2v+2xv=(x+sin(lnx))/xx^2v'+2xv=(x+sin(lnx))/x


ddx(x2v)=(x+sin(lnx))/x\frac{d}{dx}(x^2v)=(x+sin(lnx))/x


x2v=(x+sin(lnx))/xdxx^2v=\int(x+sin(lnx))/xdx


x2v=xcos(lnx)+c1x^2v=x-cos(lnx)+c_1

v=y=(xcos(lnx)+c1)/x2v=y''=(x-cos(lnx)+c_1)/x^2


y=(xcos(lnx)+c1)/x2dxy'=\int(x-cos(lnx)+c_1)/x^2dx


cos(lnx)x2dx=u=lnx,dx=xdu=eucosudu=\int \frac{cos(lnx)}{x^2}dx=|u=lnx,dx=xdu|=\int e^{-u}cosudu=


=eucosueucosudu=eucosu+eusinueucosudu=-e^{-u}cosu-\intop e^{-u}cosudu=-e^{-u}cosu+-e^{-u}sinu-\intop e^{-u}cosudu


eucosudu=cos(lnu)sin(lnxu)2=cos(lnx)sin(lnx)2x\intop e^{-u}cosudu=\frac{cos(lnu)-sin(lnxu)}{2}=\frac{cos(lnx)-sin(lnx)}{2x}


y=cos(lnx)sin(lnx)2x+lnxc1/x+c2y'=\frac{cos(lnx)-sin(lnx)}{2x}+lnx-c_1/x+c_2


y=(cos(lnx)sin(lnx)2x+lnxc1/x+c2)dxy=\int (\frac{cos(lnx)-sin(lnx)}{2x}+lnx-c_1/x+c_2)dx


cos(lnx)sin(lnx)xdx=(cos(lnx)sin(lnx))d(lnx)=sin(lnx)+cos(lnx)\int \frac{cos(lnx)-sin(lnx)}{x}dx=\int (cos(lnx)-sin(lnx))d(lnx)=sin(lnx)+cos(lnx)


y=cos(lnx)+sin(lnx)2x+xlnxc1lnx+c2x+c3y=\frac{cos(lnx)+sin(lnx)}{2}-x+xlnx-c_1lnx+c_2x+c_3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS