Let, a=x2y3z4⇒ln a=2 ln x+3 ln y+4 ln z
Let
P=ln(a)+λ(x+y+z−5)∴∂x∂P=x2+λ, ∂y∂P=y3+λ, ∂z∂P=z4+λ
If we maximizing a implies maximizing P.
i.e. ∂x∂P=∂y∂P=∂z∂P=0
⇒λ=−x2=−y3=−z4∴x2=y3=z4=x+y+z2+3+4=59[As we are doing this under the constraint x+y+z=5]
⇒x=910,y=915,z=920Hence the maximum value of a is maxx,y,za=(910)2×(35)3×(910)4=3152×109
Comments
Leave a comment