Find the maximum value of
x^2y^3z^4
subject to the condition
x+y+z=5
"\\text{Let, } a=x^2y^3z^4\n\\Rightarrow \\text{ln } a=2\\text{ ln } x+3\\text{ ln } y+4\\text{ ln } z\\\\"
Let
"P=ln (a)+\\lambda (x+y+z-5)\\\\\n\\therefore \\frac{\\partial P}{\\partial x}=\\frac{2}{x}+\\lambda,~\n\\frac{\\partial P}{\\partial y}=\\frac{3}{y}+\\lambda, ~\n\\frac{\\partial P}{\\partial z}=\\frac{4}{z}+\\lambda"
If we maximizing a implies maximizing P.
i.e. "\\frac{\\partial P}{\\partial x}=\\frac{\\partial P}{\\partial y}=\\frac{\\partial P}{\\partial z}=0"
"\\Rightarrow \\lambda=-\\frac{2}{x}=-\\frac{3}{y}=-\\frac{4}{z}\\\\\n\\therefore \\frac{2}{x}=\\frac{3}{y}=\\frac{4}{z}= \\frac{2+3+4}{x+y+z}=\\frac{9}{5} \\\\\n\\texttt{[As we are doing this under the constraint x+y+z=5]}\\\\"
"\\Rightarrow x=\\frac{10}{9}, y=\\frac{15}{9}, z=\\frac{20}{9}\\\\\n\\text{Hence the maximum value of $a$ is }\\\\\n\\max_{x,y,z}a=(\\frac{10}{9})^2\\times(\\frac{5}{3})^3\\times(\\frac{10}{9})^4=\\dfrac{2\\times10^9}{3^{15}}"
Comments
Leave a comment