Answer to Question #287929 in Differential Equations for Varun

Question #287929

Find the maximum value of


x^2y^3z^4


subject to the condition


x+y+z=5

1
Expert's answer
2022-01-17T16:06:03-0500

Let, a=x2y3z4ln a=2 ln x+3 ln y+4 ln z\text{Let, } a=x^2y^3z^4 \Rightarrow \text{ln } a=2\text{ ln } x+3\text{ ln } y+4\text{ ln } z\\

Let

P=ln(a)+λ(x+y+z5)Px=2x+λ, Py=3y+λ, Pz=4z+λP=ln (a)+\lambda (x+y+z-5)\\ \therefore \frac{\partial P}{\partial x}=\frac{2}{x}+\lambda,~ \frac{\partial P}{\partial y}=\frac{3}{y}+\lambda, ~ \frac{\partial P}{\partial z}=\frac{4}{z}+\lambda

If we maximizing a implies maximizing P.

i.e. Px=Py=Pz=0\frac{\partial P}{\partial x}=\frac{\partial P}{\partial y}=\frac{\partial P}{\partial z}=0

λ=2x=3y=4z2x=3y=4z=2+3+4x+y+z=95[As we are doing this under the constraint x+y+z=5]\Rightarrow \lambda=-\frac{2}{x}=-\frac{3}{y}=-\frac{4}{z}\\ \therefore \frac{2}{x}=\frac{3}{y}=\frac{4}{z}= \frac{2+3+4}{x+y+z}=\frac{9}{5} \\ \texttt{[As we are doing this under the constraint x+y+z=5]}\\

x=109,y=159,z=209Hence the maximum value of a is maxx,y,za=(109)2×(53)3×(109)4=2×109315\Rightarrow x=\frac{10}{9}, y=\frac{15}{9}, z=\frac{20}{9}\\ \text{Hence the maximum value of $a$ is }\\ \max_{x,y,z}a=(\frac{10}{9})^2\times(\frac{5}{3})^3\times(\frac{10}{9})^4=\dfrac{2\times10^9}{3^{15}}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment