Question #287926

Find the extreme values of




x^4+y^4-2(x-y)^2

1
Expert's answer
2022-01-17T16:50:07-0500

f(x,y)=x4+y42(xy)2fx=4x34(xy)=4(x3x+y)fy=4(y3y+x)At extremum, fx=fy=0x3x+y=0   (i),y3y+x=0    (ii)Adding (i) and (ii), x3+y3=0x=yPutting x=-y in (i) and (ii), (x,y)=(0,0),(2,2),(2,2)2fx2=4(3x21),2fx2=4(3y21)2fxy=4=2fyxHassein Matrix,H(x,y)=[12x244412y24]f(x,y)=x^4+y^4-2(x-y)^2\\ \dfrac{\partial f}{\partial x}=4x^3-4(x-y)=4(x^3-x+y)\\ \dfrac{\partial f}{\partial y}=4(y^3-y+x)\\ \text{At extremum, }\dfrac{\partial f}{\partial x}=\dfrac{\partial f}{\partial y}=0\\ \therefore x^3-x+y=0~~~(i), y^3-y+x=0~~~~(ii)\\ \text{Adding (i) and (ii), }\\ x^3+y^3=0\Rightarrow x=-y\\ \text{Putting x=-y in (i) and (ii), }\\ (x,y)=(0,0), (\sqrt 2, -\sqrt 2), (-\sqrt 2, \sqrt 2)\\ \dfrac{\partial^2 f}{\partial x^2}=4(3x^2-1), \dfrac{\partial^2 f}{\partial x^2}=4(3y^2-1)\\ \dfrac{\partial^2 f}{\partial x \partial y}=4=\dfrac{\partial^2 f}{\partial y \partial x}\\ \therefore \text{Hassein Matrix,} \\ H(x,y)=\begin{bmatrix} 12x^2-4&4\\4&12y^2-4\end{bmatrix}\\


Determinant, D(x,y)=144x2y248(x2+y2)D(2,2)=D(2,2)=384>02fx2(2,2)=2fx2(2,2)=20>0Hence, f has two local minima at (2,2) and (2,2) Now, D(0,0)=0So, we can’t decide anything by second derivative testNow if we approach at (0,0) by y=x,f(x,y)=f(x,x)=2x4>0Now if we approach at (0,0) by y=x,f(x,y)=f(x,x)=2x48x2<0   near zero. So there is no extremum at (0,0).\text{Determinant, } D(x,y)=144x^2y^2-48(x^2+y^2)\\ \therefore D(\sqrt2, -\sqrt2)=D(-\sqrt2, \sqrt2)=384>0\\ \dfrac{\partial^2 f}{\partial x^2}|_{(\sqrt2, -\sqrt2)}=\dfrac{\partial^2 f}{\partial x^2}|_{(-\sqrt2, \sqrt2)} =20>0\\ \text{Hence, $f$ has two local minima at }\\ \text{$(\sqrt2, -\sqrt2)$ and $(-\sqrt2, \sqrt2)$}\\ ~\\ \text{Now, } D(0,0)=0\\ \text{So, we can't decide anything by second derivative test}\\ \text{Now if we approach at (0,0) by $y=x$,}\\ f(x,y)=f(x,x)=2x^4>0\\ \text{Now if we approach at (0,0) by $y=-x$,}\\ f(x,y)=f(x,x)=2x^4-8x^2<0~~ \text{ near zero.}\\~\\ \text{So there is no extremum at $(0,0)$.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS