f(x,y)=x4+y4−2(x−y)2∂x∂f=4x3−4(x−y)=4(x3−x+y)∂y∂f=4(y3−y+x)At extremum, ∂x∂f=∂y∂f=0∴x3−x+y=0(i),y3−y+x=0(ii)Adding (i) and (ii), x3+y3=0⇒x=−yPutting x=-y in (i) and (ii), (x,y)=(0,0),(2,−2),(−2,2)∂x2∂2f=4(3x2−1),∂x2∂2f=4(3y2−1)∂x∂y∂2f=4=∂y∂x∂2f∴Hassein Matrix,H(x,y)=[12x2−44412y2−4]
Determinant, D(x,y)=144x2y2−48(x2+y2)∴D(2,−2)=D(−2,2)=384>0∂x2∂2f∣(2,−2)=∂x2∂2f∣(−2,2)=20>0Hence, f has two local minima at (2,−2) and (−2,2)Now, D(0,0)=0So, we can’t decide anything by second derivative testNow if we approach at (0,0) by y=x,f(x,y)=f(x,x)=2x4>0Now if we approach at (0,0) by y=−x,f(x,y)=f(x,x)=2x4−8x2<0 near zero.So there is no extremum at (0,0).
Comments