Solve the differential equation
(x² + y²)dx-xydy = 0
Solution
Given equation may be rewritten in the form
dydx=x2+y2xy=xy+yx\frac{dy}{dx}=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}dxdy=xyx2+y2=yx+xy
Let z=y/x => dydx=dzdxx+z\frac{dy}{dx}=\frac{dz}{dx}x+zdxdy=dxdzx+z => dzdxx+z =1z+z\frac{dz}{dx}x+z\ =\frac{1}{z}+zdxdzx+z =z1+z => zdz = dx/x => ∫zdz=∫dxx\int{zdz=\int\frac{dx}{x}}∫zdz=∫xdx => z2/2=ln|x|+C => C = z2/2 - ln|x| = y2/(2x2)-ln|x| => y(x)=2x2(C+ln∣x∣)y(x)=\sqrt{2x^2\left(C+ln|x|\right)}y(x)=2x2(C+ln∣x∣)
Answer
y(x)=2x2(C+ln∣x∣)y(x)=\sqrt{2x^2\left(C+ln|x|\right)}y(x)=2x2(C+ln∣x∣)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments