Answer to Question #287250 in Differential Equations for apple

Question #287250

Solve the differential equation


(x² + y²)dx-xydy = 0


1
Expert's answer
2022-01-14T06:09:11-0500

Solution

Given equation may be rewritten in the form

dydx=x2+y2xy=xy+yx\frac{dy}{dx}=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}

Let z=y/x => dydx=dzdxx+z\frac{dy}{dx}=\frac{dz}{dx}x+z  => dzdxx+z =1z+z\frac{dz}{dx}x+z\ =\frac{1}{z}+z  => zdz = dx/x  =>   zdz=dxx\int{zdz=\int\frac{dx}{x}}    => z2/2=ln|x|+C   =>  C = z2/2 - ln|x| = y2/(2x2)-ln|x|   =>  y(x)=2x2(C+lnx)y(x)=\sqrt{2x^2\left(C+ln|x|\right)}

Answer

y(x)=2x2(C+lnx)y(x)=\sqrt{2x^2\left(C+ln|x|\right)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment