Solve the differential equation
(x² + y²)dx-xydy = 0
Solution
Given equation may be rewritten in the form
"\\frac{dy}{dx}=\\frac{x^2+y^2}{xy}=\\frac{x}{y}+\\frac{y}{x}"
Let z=y/x => "\\frac{dy}{dx}=\\frac{dz}{dx}x+z" => "\\frac{dz}{dx}x+z\\ =\\frac{1}{z}+z" => zdz = dx/x => "\\int{zdz=\\int\\frac{dx}{x}}" => z2/2=ln|x|+C => C = z2/2 - ln|x| = y2/(2x2)-ln|x| => "y(x)=\\sqrt{2x^2\\left(C+ln|x|\\right)}"
Answer
"y(x)=\\sqrt{2x^2\\left(C+ln|x|\\right)}"
Comments
Leave a comment