1)
x' and y' does not depend explicitly on time, it is autonomous system
also, this is nonlinear system
2)
x(−20−x+2y)=0
y(−50+x−y)=0
equilibrium points:
(0,0),(0,−50),(−20,0),(120,70)
Jacobian matrix:
J=(∂f/∂x∂g/∂x∂f/∂y∂g/∂y)=(−20−2x+2yy2x−50+x−2y)
where
f(x,y)=x(−20−x+2y)
g(x,y)=y(−50+x−y)
for equilibrium points:
J(0,0)=(−2000−50)
(x′y′)=(−2000−50)(xy)=(−20x−50y)
J(0,−50)=(−120−50050)
(x′y′)=(−120−50050)(xy)=(−120x−50x+50y)
J(−20,0)=(200−40−70)
(x′y′)=(200−40−70)(xy)=(20x−40y−70y)
J(120,70)=(−12070240−70)
(x′y′)=(−12070240−70)(xy)=(−120x+240y70x−70y)
3)
find eigenvalues:
for J(0,0) :
(−20−r)(−50−r)=0
r1=−20,r2=−50
eigenvalues are real, r2 < r2 < 0
so, (0,0) is an asymptotically stable node
for J(0,−50) :
(−120−r)(50−r)=0
r1=−120,r2=50
eigenvalues are real, r1 < 0 < r2
so, (0,-50) is a saddle point
for J(−20,0) :
(20−r)(−70−r)=0
r1=20,r2=−70
eigenvalues are real, r2 < 0 < r1
so, (0,-50) is a saddle point
for J(120,70) :
(−120−r)(−70−r)−240⋅70=0
r2+190r−8400=0
r=2−190±1902+4⋅8400
r1=37,r2=−227
eigenvalues are real, r2 < 0 < r1
so, (120,70) is a saddle point
4)
Comments