Since, given equation is unclear, we assume the given equation to solve is ∂x∂u=2∂t∂u+u=0;u(x,0)=6e−3x
Given, ∂x∂u=2∂t∂u+u=0 ...(i)
Let the solution be u(x,t)=X(x).T(t) ...(ii)
Using (ii) in (i).
X′T=2XT′+XT⇒(X′−X)T=2XT′⇒XX′−X=T2T′=k (say)
Now, solving XX′−X=k
⇒XX′=k+1
On integrating,
logX=(k+1)x+logC1⇒logX=(k+1)xloge+logC1⇒logX=loge(k+1)x+logC1⇒X=C1e(k+1)x
On solving T2T′=k
⇒TT′=2k
On integrating,
logT=2kt+logC2⇒T=C2ekt/2∴u(x,t)=X.T=C1e(k+1)x.C2ekt/2=C1C2e(k+1)x+kt/2
When t=0,
u(x,0)=C1C2e(k+1)x=6e−3x
On comparing
C1C2=6,k+1=−3⇒k=−4∴u(x,t)=6e−3x−2t=6e−(3x+2t)
Comments