Question #286892

Solve, using the method of separation of variables, the PDE

∂u

∂t +

∂u

∂x + 2e

tu = 0



1
Expert's answer
2022-01-12T18:40:35-0500

Since, given equation is unclear, we assume the given equation to solve is ux=2ut+u=0;u(x,0)=6e3x\dfrac{∂u}{∂x} =2\dfrac{∂u}{∂t}+u=0 ; u(x,0)=6e^{-3x}


Solution:

Given, ux=2ut+u=0\dfrac{∂u}{∂x} =2\dfrac{∂u}{∂t}+u=0 ...(i)

Let the solution be u(x,t)=X(x).T(t)u(x,t)=X(x).T(t) ...(ii)

Using (ii) in (i).

XT=2XT+XT(XX)T=2XTXXX=2TT=k  (say)X'T=2XT'+XT \\ \Rightarrow (X'-X)T=2XT' \\ \Rightarrow \dfrac{X'-X}X=\dfrac{2T'}T=k\ \ (say)

Now, solving XXX=k\dfrac{X'-X}X=k

XX=k+1\Rightarrow \dfrac{X'}X=k+1

On integrating,

logX=(k+1)x+logC1logX=(k+1)xloge+logC1logX=loge(k+1)x+logC1X=C1e(k+1)x\log X=(k+1)x+\log C_1 \\ \Rightarrow \log X=(k+1)x\log e+\log C_1 \\ \Rightarrow \log X=\log e^{(k+1)x}+\log C_1 \\ \Rightarrow X=C_1e^{(k+1)x}

On solving 2TT=k\dfrac{2T'}T=k

TT=k2\Rightarrow \dfrac{T'}T=\dfrac k2

On integrating,

logT=k2t+logC2T=C2ekt/2u(x,t)=X.T=C1e(k+1)x.C2ekt/2=C1C2e(k+1)x+kt/2\log T=\dfrac k2t+\log C_2 \\\Rightarrow T=C_2e^{kt/2} \\ \therefore u(x,t)=X.T=C_1e^{(k+1)x}.C_2e^{kt/2} \\=C_1C_2e^{(k+1)x+kt/2}

When t=0,

u(x,0)=C1C2e(k+1)x=6e3xu(x,0)=C_1C_2e^{(k+1)x}=6e^{-3x}

On comparing

C1C2=6,k+1=3k=4u(x,t)=6e3x2t=6e(3x+2t)C_1C_2=6,k+1=-3\Rightarrow k=-4 \\ \therefore u(x,t)=6e^{-3x-2t}=6e^{-(3x+2t)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS