Answer to Question #286786 in Differential Equations for Mahboob

Question #286786

A string of iength L is stretched and fastened to two fix points. Find the solution of



the r.{ave equatiorl (vibrating string) ytt = a^2.yxx, when initial displacernent



y(x,0) = f (x) = b sin (pi.x / t).



also find the Fourier cosine transformation of exp(-x^2)

1
Expert's answer
2022-02-01T16:41:49-0500

The given question is incomplete thus we assume a complete form below;2yt2=a22yx2y(0,t)=0,y(L,t)=0,0tLy(x,0)=bsin(πxL), y(x,0)t=sin(nπxL), 0xLLet’s start off with the product solution;y(x,t)=X(x)T(t)Plugging this into the two boundary conditions gives,X(0)=0,X(L)=0Plugging the product solution into the differential equation, separating andintroducing a separation constant gives,2(X(x)T(t))t2=a22(X(x)T(t)))x2X(x)d2Tdt2=a2T(t)d2Xdx21a2T(t)d2Tdt2=1X(x)d2Xdx2=λWe moved the a2 to the left side for convenience and chose λ for the separationconstant so the differential equation for X would match a known (and solved) case. The two ordinary differential equations we get from separation of variables are then,d2Tdt2+a2λT=0 and d2Xdx2+λX=0 with the boundary conditionsX(0)=0 and X(L)=0Now, the eigenvalues and eigenfunctions for this problem are,λn=(nπL)2 and Xn(x)=sin(nπxL) respectively. For n=1,2,3,.The first ordinary differential equation is now,d2Tdt2+(πnaL)2T=0and because the coefficient of the T is clearly positive the solution to this is,T(t)=c1cos(nπatL)+c2sin(nπatL)Because there is no reason to think that either of the oefficients above are zero we then get two product solutions,yn(x,t)=Ancos(nπatL)sin(nπxL),andyn(x,t)=Bnsin(nπatL)sin(nπxL) for n=1,2,3,Then the general solution due to the principle of superposition is,y(x,t)=n=1[Ancos(nπatL)sin(nπxL)+Bnsin(nπatL)sin(nπxL)].Now in order to apply the second initial condition we will need to differentiate thegeneral solution with respect to t. So,yt=n=1[nπcLAnsin(nπctL)sin(nπxL)+Bncos(nπctL)sin(nπxL)].Applying the initial conditions yields,y(x,0)=y0sin(2πxL)=n=1[Ansin(nπxL)],andy(x,0)t=n=1[nπcLBnsin(nπxL)].Now, using the formulas from Fourier sine series and since we have even functions, we get;An=2L0L[(bsin(πxL))(sin(nπxL))] dx,for n=1,2,3,Bn=2nπc0L[(bsin(nπxL))(sin(nπxL))] dx,for n=1,2,3,Thus, upon integrating we haveAn=0 if n1,and A2=bAlso, Bn=Lbnπa, for n=1,2,3,Hence, y(x,t)=bcos(2πctL)sin(2πxL)+Lbπa{n=1[1nsin(nπatL)sin(nπxL)]}is the solution of the given initial boundary value problem.\displaystyle \text{The given question is incomplete thus we assume a complete form below;}\\ \frac{\partial^2y}{\partial t^2}=a^2\frac{\partial^2y}{\partial x^2}\\ y(0,\text{t})=0, y(L,\text{t})=0,0\leq t \leq \text{L}\\ \text{y(x,0)}=b\sin(\frac{\pi x}{L}),\ \frac{\partial y(x,0)}{\partial t}=\sin(\frac{n\pi x}{L}),\ 0\leq x \leq L\\ \text{Let's start off with the product solution;}\\\text{y(x,t)}=\text{X(x)T(t)}\\ \text{Plugging this into the two boundary conditions gives,}\\ \text{X(0)}=0,\text{X(L)=0}\\ \text{Plugging the product solution into the differential equation, separating and}\\ \text{introducing a separation constant gives,}\\ \frac{\partial^2(X(x)T(t))}{\partial t^2}=a^2\frac{\partial^2(X(x)T(t)))}{\partial x^2}\\ \Rightarrow X(x)\frac{d^2 T}{dt^2}=a^2T(t)\frac{d^2X}{dx^2}\\ \Rightarrow \frac{1}{a^2T(t)}\frac{d^2T}{dt^2}=\frac{1}{X(x)}\frac{d^2X}{dx^2}=-\lambda\\ \text{We moved the $a^2$ to the left side for convenience and chose $-\lambda$ for the separation}\\ \text{constant so the differential equation for X would match a known (and solved) case. }\\ \text{The two ordinary differential equations we get from separation of variables are then,}\\ \frac{d^2T}{dt^2}+a^2\lambda T=0 \text{ and } \frac{d^2X}{dx^2}+\lambda X=0 \text{ with the boundary conditions}\\ \text{X(0)}=0 \text{ and } \text{X(L)}=0\\ \text{Now, the eigenvalues and eigenfunctions for this problem are,}\\ \lambda_n=(\frac{n\pi}{L})^2 \text{ and }X_n(x)=\sin(\frac{n\pi x}{L}) \text{ respectively. For n} =1,2,3,\ldots.\\ \text{The first ordinary differential equation is now,}\\ \frac{d^2T}{dt^2}+(\frac{\pi na}{L})^2 T=0\\ \text{and because the coefficient of the T is clearly positive the solution to this is,}\\ T(t)=c_1\cos(\frac{n\pi at}{L})+c_2\sin(\frac{n\pi at}{L})\\ \text{Because there is no reason to think that either of the oefficients above are zero we}\\ \text{ then get two product solutions,}\\ y_n(x,t)=A_n\cos(\frac{n\pi at}{L})\sin(\frac{n\pi x}{L}), \text{and}\\ y_n(x,t)=B_n\sin(\frac{n\pi at}{L})\sin(\frac{n\pi x}{L}) \text{ for n}=1,2,3,\ldots\\ \quad\\ \text{Then the general solution due to the principle of superposition is,}\\ y(x,t)=\sum^\infty_{n=1}[A_n\cos(\frac{n\pi at}{L})\sin(\frac{n\pi x}{L})+B_n\sin(\frac{n\pi at}{L})\sin(\frac{n\pi x}{L})].\\ \qquad\\ \qquad\\ \text{Now in order to apply the second initial condition we will need to differentiate the}\\ \text{general solution with respect to t. So,} \\ \frac{\partial y}{\partial t}=\sum^\infty_{n=1}[-\frac{n \pi c}{L}A_n\sin(\frac{n\pi ct}{L})\sin(\frac{n\pi x}{L})+B_n\cos(\frac{n\pi ct}{L})\sin(\frac{n\pi x}{L})].\\ \text{Applying the initial conditions yields,}\\ y(x,0)=y_0\sin(\frac{2\pi x}{L})=\sum^\infty_{n=1}[A_n\sin(\frac{n \pi x}{L})], \text{and}\\ \frac{\partial y(x,0)}{\partial t}=\sum^\infty_{n=1}[\frac{n\pi c}{L}B_n\sin(\frac{n\pi x}{L})].\\ \text{Now, using the formulas from Fourier sine series and since we have even functions, we get;}\\ A_n=\frac{2}{L}\int^L_0[(b\sin(\frac{\pi x}{L}))(\sin(\frac{n\pi x}{L}))] \ dx, \text{for n}=1,2,3,\ldots\\ B_n=\frac{2}{n\pi c}\int^L_0[(b\sin(\frac{n\pi x}{L}))(\sin(\frac{n\pi x}{L}))] \ dx, \text{for n}=1,2,3,\ldots\\ \text{Thus, upon integrating we have} \\ A_n=0 \text{ if n}\neq1, \text{and A}_2=b\\ \text{Also, } B_n=\frac{L b}{n\pi a} \text{, for n=}1,2,3,\ldots\\ \text{Hence, y(x,t)}=b\cos(\frac{2\pi ct}{L})\sin(\frac{2\pi x}{L})+\frac{Lb}{\pi a}\left\{\sum^\infty_{n=1}\left[\frac{1}{n}\sin(\frac{n\pi at}{L})\sin(\frac{n\pi x}{L})\right]\right\} \\ \text{is the solution of the given initial boundary value problem.}

2] f(x)=ex2\displaystyle f(x)=e^{-x^2}\\

The Fourier cosine transformation of the given function is;

Fc(ex2)=0ex2cos(sx) dx=IdIds=0xex2sin(sx) dx=120(2xex2)sin(sx) dxUsing integration by parts, we havedIds=0xex2sin(sx) dx=120(2xex2)sin(sx) dx=12{[sin(sx)(2xex2 dx)]0s0cos(sx)(2xex2 dx) dx}=12{[sin(sx)(ex2)]0s0cos(sx)(ex2) dx} since, (2xex2) dx=2(xex2) dx=ep dp=ep=ex2, if p=x2=0s20ex2cos(sx) dxdIds=s20ex2cos(sx) dx=s2IdII=s2ds\displaystyle F_c(e^{-x^2})=\int^\infty_0e^{-x^2}\cos(sx)\ dx=I\\ \Rightarrow \frac{dI}{ds}=-\int^\infty_0xe^{-x^2}\sin(sx)\ dx=\frac{1}{2}\int^\infty_0(-2xe^{-x^2})\sin(sx)\ dx\\ \text{Using integration by parts, we have}\\ \Rightarrow \frac{dI}{ds}=-\int^\infty_0xe^{-x^2}\sin(sx)\ dx=\frac{1}{2}\int^\infty_0(-2xe^{-x^2})\sin(sx)\ dx\\ \qquad\quad=\frac{1}{2}\left\{\left[\sin(sx)\left(\int-2xe^{-x^2}\ dx\right)\right]^\infty_0-s\int^\infty_0\cos(sx)\left(\int-2xe^{-x^2\ }dx\right)\ dx\right\}\\ \qquad\quad=\frac{1}{2}\left\{\left[\sin(sx)\left(e^{-x^2}\right)\right]^\infty_0-s\int^\infty_0\cos(sx)\left(e^{-x^2}\right)\ dx\right\}\\ \text{ since, }\int(-2xe^{-x^2})\ dx=-2\int(xe^{-x^2})\ dx=\int e^p\ dp=e^p=e^{-x^2}, \text{ if }p=-x^2\\ \qquad\quad=0-\frac{s}{2}\int^\infty_0e^{-x^2}\cos (sx)\ dx\\ \Rightarrow \frac{dI}{ds}=-\frac{s}{2}\int^\infty_0e^{-x^2}\cos(sx)\ dx=-\frac{s}{2}I\\ \Rightarrow \frac{dI}{I}=-\frac{s}{2}ds\\

Integrating both sides yields;

ln(I)=(s2) ds+ln(a), where ln(a) is an arbitrary constant. =s24+ln(a)ln(I)ln(a)=s24ln(Ia)=s24Ia=es24I=aes24\displaystyle \ln (I)=\int\left(-\frac{s}{2}\right)\ ds+\ln(a), \text{ where ln(a) is an arbitrary constant.}\\ \ \qquad=-\frac{s^2}{4}+\ln(a)\\ \Rightarrow \ln(I)-\ln(a)=-\frac{s^2}{4}\\ \Rightarrow\ln\left(\frac{I}{a}\right)=-\frac{s^2}{4}\\ \Rightarrow \frac{I}{a}=e^{-\frac{s^2}{4}}\\ \Rightarrow I=ae^{-\frac{s^2}{4}}\\


Thus,

Fc(ex2)=0ex2cos(sx) dx=I0ex2cos(sx) dx=aes24\displaystyle F_c(e^{-x^2})=\int^\infty_0e^{-x^2}\cos(sx)\ dx=I\\ \Rightarrow \int^\infty_0e^{-x^2}\cos(sx)\ dx=ae^{-\frac{s^2}{4}}

Now, s = 0 a=0ex2 dx=π2\displaystyle \Rightarrow a=\int^\infty_0e^{-x^2}\ dx=\frac{\sqrt{\pi}}{2}


Hence,

Fc(ex2)=0ex2cos(sx) dx=I=aes24=π2es24\displaystyle F_c(e^{-x^2})=\int^\infty_0e^{-x^2}\cos(sx)\ dx=I=ae^{-\frac{s^2}{4}}=\frac{\sqrt{\pi}}{2}e^{-\frac{s^2}{4}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment