A string of iength L is stretched and fastened to two fix points. Find the solution of
the r.{ave equatiorl (vibrating string) ytt = a^2.yxx, when initial displacernent
y(x,0) = f (x) = b sin (pi.x / t).
also find the Fourier cosine transformation of exp(-x^2)
1
Expert's answer
2022-02-01T16:41:49-0500
The given question is incomplete thus we assume a complete form below;∂t2∂2y=a2∂x2∂2yy(0,t)=0,y(L,t)=0,0≤t≤Ly(x,0)=bsin(Lπx),∂t∂y(x,0)=sin(Lnπx),0≤x≤LLet’s start off with the product solution;y(x,t)=X(x)T(t)Plugging this into the two boundary conditions gives,X(0)=0,X(L)=0Plugging the product solution into the differential equation, separating andintroducing a separation constant gives,∂t2∂2(X(x)T(t))=a2∂x2∂2(X(x)T(t)))⇒X(x)dt2d2T=a2T(t)dx2d2X⇒a2T(t)1dt2d2T=X(x)1dx2d2X=−λWe moved the a2 to the left side for convenience and chose −λ for the separationconstant so the differential equation for X would match a known (and solved) case. The two ordinary differential equations we get from separation of variables are then,dt2d2T+a2λT=0 and dx2d2X+λX=0 with the boundary conditionsX(0)=0 and X(L)=0Now, the eigenvalues and eigenfunctions for this problem are,λn=(Lnπ)2 and Xn(x)=sin(Lnπx) respectively. For n=1,2,3,….The first ordinary differential equation is now,dt2d2T+(Lπna)2T=0and because the coefficient of the T is clearly positive the solution to this is,T(t)=c1cos(Lnπat)+c2sin(Lnπat)Because there is no reason to think that either of the oefficients above are zero we then get two product solutions,yn(x,t)=Ancos(Lnπat)sin(Lnπx),andyn(x,t)=Bnsin(Lnπat)sin(Lnπx) for n=1,2,3,…Then the general solution due to the principle of superposition is,y(x,t)=n=1∑∞[Ancos(Lnπat)sin(Lnπx)+Bnsin(Lnπat)sin(Lnπx)].Now in order to apply the second initial condition we will need to differentiate thegeneral solution with respect to t. So,∂t∂y=n=1∑∞[−LnπcAnsin(Lnπct)sin(Lnπx)+Bncos(Lnπct)sin(Lnπx)].Applying the initial conditions yields,y(x,0)=y0sin(L2πx)=n=1∑∞[Ansin(Lnπx)],and∂t∂y(x,0)=n=1∑∞[LnπcBnsin(Lnπx)].Now, using the formulas from Fourier sine series and since we have even functions, we get;An=L2∫0L[(bsin(Lπx))(sin(Lnπx))]dx,for n=1,2,3,…Bn=nπc2∫0L[(bsin(Lnπx))(sin(Lnπx))]dx,for n=1,2,3,…Thus, upon integrating we haveAn=0 if n=1,and A2=bAlso, Bn=nπaLb, for n=1,2,3,…Hence, y(x,t)=bcos(L2πct)sin(L2πx)+πaLb{n=1∑∞[n1sin(Lnπat)sin(Lnπx)]}is the solution of the given initial boundary value problem.
2] f(x)=e−x2
The Fourier cosine transformation of the given function is;
Fc(e−x2)=∫0∞e−x2cos(sx)dx=I⇒dsdI=−∫0∞xe−x2sin(sx)dx=21∫0∞(−2xe−x2)sin(sx)dxUsing integration by parts, we have⇒dsdI=−∫0∞xe−x2sin(sx)dx=21∫0∞(−2xe−x2)sin(sx)dx=21{[sin(sx)(∫−2xe−x2dx)]0∞−s∫0∞cos(sx)(∫−2xe−x2dx)dx}=21{[sin(sx)(e−x2)]0∞−s∫0∞cos(sx)(e−x2)dx} since, ∫(−2xe−x2)dx=−2∫(xe−x2)dx=∫epdp=ep=e−x2, if p=−x2=0−2s∫0∞e−x2cos(sx)dx⇒dsdI=−2s∫0∞e−x2cos(sx)dx=−2sI⇒IdI=−2sds
Integrating both sides yields;
ln(I)=∫(−2s)ds+ln(a), where ln(a) is an arbitrary constant.=−4s2+ln(a)⇒ln(I)−ln(a)=−4s2⇒ln(aI)=−4s2⇒aI=e−4s2⇒I=ae−4s2
Comments
Leave a comment