D(x2+2x+3)SinceD=dxdSo, we have,dxd(x2+2x+3)=dxd(x2)+dxd(2x)+dxd(3)=2x+2D2(xe3x−e4x)SinceD=dxdSo, we have,dx2d2(xe3x−e4x)dxd(dxd(xe3x−e4x))=dxd(dxdxe3x−dxde4x)Recall the product rule of differentiationUV=Vdu+UdvBy comparison letu=x,v=e3xUpon differentiation. We have,dxd(e3x+3xe3x−4e4x)=dxd(e3x)+3dxd(xe3x)−4dxd(e4x)=3e3x+3(e3x+3xe3x)−4(4e4x)=3e3x+3e3x+9xe3x−16e4x=9xe3x+6e3x−16e4x
Comments