Question #286749

Evaluate the following functions in differential operator form.

  1. D(x2+2x-3) Ans. (2x+2)
  2. D2(xe3x-e4x) Ans. 9xe3x+6e3x-16e4x
1
Expert's answer
2022-01-18T06:22:19-0500

D(x2+2x+3)SinceD=ddxSo, we have,ddx(x2+2x+3)=ddx(x2)+ddx(2x)+ddx(3)=2x+2D2(xe3xe4x)SinceD=ddxSo, we have,d2dx2(xe3xe4x)ddx(ddx(xe3xe4x))=ddx(ddxxe3xddxe4x)Recall the product rule of differentiationUV=Vdu+UdvBy comparison letu=x,v=e3xUpon differentiation. We have,ddx(e3x+3xe3x4e4x)=ddx(e3x)+3ddx(xe3x)4ddx(e4x)=3e3x+3(e3x+3xe3x)4(4e4x)=3e3x+3e3x+9xe3x16e4x=9xe3x+6e3x16e4xD(x^2 + 2x + 3) \\ \text{Since}\, D = \dfrac{d}{dx} \\ \text{So, we have,}\\ \dfrac{d}{dx} (x^2 + 2x + 3) \\ = \dfrac{d}{dx} (x^2) + \dfrac{d}{dx} (2x) + \dfrac{d}{dx} (3) \\ = 2x + 2 \\ \\ D^2(xe^{3x} - e^{4x})\\ \text{Since} \, D = \dfrac{d}{dx} \\ \text{So, we have,}\\ \dfrac{d^2}{dx^2} (xe^{3x} - e^{4x})\\ \dfrac{d}{dx} (\dfrac{d}{dx} (xe^{3x} - e^{4x}))\\ = \dfrac{d}{dx} (\dfrac{d}{dx} xe^{3x} - \dfrac{d}{dx} e^{4x})\\ \text{Recall the product rule of differentiation}\\ UV = Vdu + Udv\\ \text{By comparison let} \, u = x, v = e^{3x}\\ \text{Upon differentiation. We have,}\\ \dfrac{d}{dx} (e^{3x} + 3xe^{3x} - 4e^{4x})\\ = \dfrac{d}{dx} (e^{3x}) + 3 \dfrac{d}{dx} (xe^{3x}) - 4 \dfrac{d}{dx} (e^{4x})\\ = 3e^{3x} + 3(e^{3x} + 3xe^{3x}) - 4(4e^{4x})\\ = 3e^{3x} + 3e^{3x} + 9xe^{3x} - 16e^{4x}\\ = 9xe^{3x} + 6e^{3x} - 16e^{4x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS