Question #286397

d^2y/dx^2+4dy/dx-4y=sin3x




1
Expert's answer
2022-01-11T13:19:44-0500

y+4y4y=sin3xy''+4y'-4y=\sin3x

solution find in form

y=y1+y2y=y_1+y_2

then

1)y+4y4y=0λ2+4λ4=0λ1=222,λ2=2+22y1=c1e(222)x+c2e(2+22)x2)y2=acos3x+bsin3xy2=3asin3x+3bcos3xy2=9acos3x9bsin3x1) y''+4y'-4y=0\\ \lambda^2+4\lambda-4=0\\ \lambda_1=-2-2\sqrt{2}, \lambda_2=-2+2\sqrt{2}\\ y_1=c_1e^{(-2-2\sqrt{2})x}+c_2e^{(-2+2\sqrt{2})x}\\ 2) y_2=a\cos3x+b\sin3x\\ y_2'=-3a\sin3x+3b\cos3x\\ y_2''=-9a\cos3x-9b\sin3x\\

Plug in the equation

9acos3x9bsin3x12asin3x++12bcos3x4acos3x4bsin3x=sin3xcos3x:9a+12b4a=0sin3x:9b12a4b=1a=12b1313b12a=1,13b144b13=1,313b=13,b=13313,a=12313y2=12313cos3x13313sin3x-9a\cos3x-9b\sin3x-12a\sin3x+\\ +12b\cos3x-4a\cos3x-4b\sin3x=\sin3x\\ \cos3x: -9a+12b-4a=0\\ \sin3x: -9b-12a-4b=1\\ a=\frac{12b}{13}\\ -13b-12a=1, -13b-\frac{144b}{13}=1, -313b=13, \\ b=-\frac{13}{313}, a=-\frac{12}{313}\\ y_2=-\frac{12}{313}\cos3x-\frac{13}{313}\sin3x\\

Answer:

y=c1e(222)x+c2e(2+22)x12313cos3x13313sin3xy=c_1e^{(-2-2\sqrt{2})x}+c_2e^{(-2+2\sqrt{2})x}-\\ -\frac{12}{313}\cos3x-\frac{13}{313}\sin3x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS