y′′+4y′−4y=sin3x
solution find in form
y=y1+y2
then
1)y′′+4y′−4y=0λ2+4λ−4=0λ1=−2−22,λ2=−2+22y1=c1e(−2−22)x+c2e(−2+22)x2)y2=acos3x+bsin3xy2′=−3asin3x+3bcos3xy2′′=−9acos3x−9bsin3x
Plug in the equation
−9acos3x−9bsin3x−12asin3x++12bcos3x−4acos3x−4bsin3x=sin3xcos3x:−9a+12b−4a=0sin3x:−9b−12a−4b=1a=1312b−13b−12a=1,−13b−13144b=1,−313b=13,b=−31313,a=−31312y2=−31312cos3x−31313sin3x
Answer:
y=c1e(−2−22)x+c2e(−2+22)x−−31312cos3x−31313sin3x
Comments