Question #287031

{F} Solve the first order linear inhomogeneous differential equation using the Bernoulli method

y,-(2y/x)=1+(1/x)


1
Expert's answer
2022-02-07T15:29:27-0500

Bernoulli equation is of the form dydx+p(x)y=q(x)yn\displaystyle \frac{dy}{dx}+p(x)y=q(x)y^n. The given DE has n=0 which reduces the standard Bernoulli equation to dydx+p(x)y=q(x)\displaystyle \frac{dy}{dx}+p(x)y=q(x) which can be solved as a first order linear differential equation.


Now, the given DE is;

y(2x)y=1+1x\displaystyle y\prime-\left(\frac{2}{x}\right)y=1+\frac{1}{x}

putting y=uvy=uv into the given DE yields;

uv+vu(2x)uv=1+1xuv+v[u2xu]=1+1x(1)\displaystyle uv\prime+vu\prime-\left(\frac{2}{x}\right)uv=1+\frac{1}{x}\\ \Rightarrow uv\prime+v\left[u\prime-\frac{2}{x}u\right]=1+\frac{1}{x}\cdots\cdots(1)\\

Putting the coefficient of vv equal zero yields;

u2xu=0dudx=2ux\displaystyle u\prime-\frac{2}{x}u=0\Rightarrow\frac{du}{dx}=\frac{2u}{x}

By method of separation of variables, we have;

\displaystyle1ududx=2x1ududx dx=2x dx1u du=2x dxlnu=lnx2+lncu=cx2,where c is an arbitrary constant.\displaystyle \frac{1}{u}\frac{du}{dx}=\frac{2}{x}\\ \Rightarrow\int\frac{1}{u}\frac{du}{dx}\ dx=\int\frac{2}{x}\ dx\Rightarrow \int\frac{1}{u}\ du=\int\frac{2}{x}\ dx\Rightarrow \ln u=\ln x^2+\ln c\\ \Rightarrow u=cx^2, \text{where c is an arbitrary constant.}


Next substituting u=cx2u=cx^2 into (1) yields;

cx2v=1+1x\displaystyle cx^2v\prime=1+\frac{1}{x}

By method of separation of variables, we have;

cdvdx=1x2+1x3\displaystyle c\frac{dv}{dx}=\frac{1}{x^2}+\frac{1}{x^3}


integrating both sides wrt xx yields;

cdvdx dx=(1x2+1x3) dxcdv=(1x2+1x3) dx\displaystyle c\int\frac{dv}{dx}\ dx=\int\left(\frac{1}{x^2}+\frac{1}{x^3}\right)\ dx\Rightarrow c\int dv=\int\left(\frac{1}{x^2}+\frac{1}{x^3}\right)\ dx

cv=1x12x2+kv=1c(1x12x2+k)\displaystyle cv=-\frac{1}{x}-\frac{1}{2x^2}+k\Rightarrow v=\frac{1}{c}\left(-\frac{1}{x}-\frac{1}{2x^2}+k\right) , where k is an arbitrary constant.

Thus,

y=uv=cx2×1c(1x12x2+k)=x12+kx2=kx2x12\displaystyle y=uv=cx^2\times \frac{1}{c}\left(-\frac{1}{x}-\frac{1}{2x^2}+k\right)=-x-\frac{1}{2}+kx^2=kx^2-x-\frac{1}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS