Question #288024

(D^2-3D+2)y= e^x/1+e^x

1
Expert's answer
2022-01-17T16:12:03-0500


Characteristic equation

k23k+2=0{k^2} - 3k + 2 = 0

(k1)(k2)=0(k - 1)(k - 2) = 0

k1=1;k2=2{k_1} = 1;\,{k_2} = 2

We obtain the general solution of the homogeneous equation

y0=C1ex+C2e2x{y_0} = {C_1}{e^x} + {C_2}{e^{2x}}

Let C1=f(x),C2=g(x){C_1} = f(x),\,\,{C_2} = g(x).

Then

y=fex+ge2xy=fex+fex+ge2x+2ge2xy = f{e^x} + g{e^{2x}} \Rightarrow y' = f'{e^x} + f{e^x} + g'{e^{2x}} + 2g{e^{2x}}

Let

fex+ge2x=0()f'{e^x} + g'{e^{2x}} = 0\,\,\,(*)

Then

y=fex+2ge2xy=fex+fex+2ge2x+4ge2xy' = f{e^x} + 2g{e^{2x}} \Rightarrow y'' = f'{e^x} + f{e^x} + 2g'{e^{2x}} + 4g{e^{2x}}

Substitute in the original equation

fex+fex+2ge2x+4ge2x3(fex+2ge2x)+2(fex+ge2x)=ex1+exf'{e^x} + f{e^x} + 2g'{e^{2x}} + 4g{e^{2x}} - 3\left( {f{e^x} + 2g{e^{2x}}} \right) + 2\left( {f{e^x} + g{e^{2x}}} \right) = \frac{{{e^x}}}{{1 + {e^x}}}

fex+2ge2x=ex1+exf'{e^x} + 2g'{e^{2x}} = \frac{{{e^x}}}{{1 + {e^x}}}

Together with (*) we have a system of equations

{fex+2ge2x=ex1+exfex+ge2x=0\left\{ \begin{array}{l} f'{e^x} + 2g'{e^{2x}} = \frac{{{e^x}}}{{1 + {e^x}}}\\ f'{e^x} + g'{e^{2x}} = 0 \end{array} \right.

from 2-nd eauation:

f=gexf' = - g'{e^x}

Substitute in the 1-st equation

ge2x+2ge2x=ex1+ex- g'{e^{2x}} + 2g'{e^{2x}} = \frac{{{e^x}}}{{1 + {e^x}}}

g=ex1+exg' = \frac{{{e^{ - x}}}}{{1 + {e^x}}}

g=ex1+exdx=xex+ln(ex+1)+C1g = \int {\frac{{{e^{ - x}}}}{{1 + {e^x}}}dx = - x - {e^{ - x}}} + \ln ({e^x} + 1) + {C_1}

f=gex=11+exf=11+exdx=ln(ex+1)x+C2f' = - g'{e^x} = - \frac{1}{{1 + {e^x}}} \Rightarrow f = - \int {\frac{1}{{1 + {e^x}}}} dx = \ln ({e^x} + 1) - x + {C_2}

Then

y=fex+ge2x=(ln(ex+1)x+C2)ex+(xex+ln(ex+1)+C1)e2xy = f{e^x} + g{e^{2x}} = \left( {\ln ({e^x} + 1) - x + {C_2}} \right){e^x} + \left( { - x - {e^{ - x}} + \ln ({e^x} + 1) + {C_1}} \right){e^{2x}}

Answer: y=(ln(ex+1)x+C2)ex+(xex+ln(ex+1)+C1)e2xy = \left( {\ln ({e^x} + 1) - x + {C_2}} \right){e^x} + \left( { - x - {e^{ - x}} + \ln ({e^x} + 1) + {C_1}} \right){e^{2x}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS