Characteristic equation
k2−3k+2=0
(k−1)(k−2)=0
k1=1;k2=2
We obtain the general solution of the homogeneous equation
y0=C1ex+C2e2x
Let C1=f(x),C2=g(x).
Then
y=fex+ge2x⇒y′=f′ex+fex+g′e2x+2ge2x
Let
f′ex+g′e2x=0(∗)
Then
y′=fex+2ge2x⇒y′′=f′ex+fex+2g′e2x+4ge2x
Substitute in the original equation
f′ex+fex+2g′e2x+4ge2x−3(fex+2ge2x)+2(fex+ge2x)=1+exex
f′ex+2g′e2x=1+exex
Together with (*) we have a system of equations
{f′ex+2g′e2x=1+exexf′ex+g′e2x=0
from 2-nd eauation:
f′=−g′ex
Substitute in the 1-st equation
−g′e2x+2g′e2x=1+exex
g′=1+exe−x
g=∫1+exe−xdx=−x−e−x+ln(ex+1)+C1
f′=−g′ex=−1+ex1⇒f=−∫1+ex1dx=ln(ex+1)−x+C2
Then
y=fex+ge2x=(ln(ex+1)−x+C2)ex+(−x−e−x+ln(ex+1)+C1)e2x
Answer: y=(ln(ex+1)−x+C2)ex+(−x−e−x+ln(ex+1)+C1)e2x
Comments