(D^2-3D+2)y= e^x/1+e^x
Characteristic equation
"{k^2} - 3k + 2 = 0"
"(k - 1)(k - 2) = 0"
"{k_1} = 1;\\,{k_2} = 2"
We obtain the general solution of the homogeneous equation
"{y_0} = {C_1}{e^x} + {C_2}{e^{2x}}"
Let "{C_1} = f(x),\\,\\,{C_2} = g(x)".
Then
"y = f{e^x} + g{e^{2x}} \\Rightarrow y' = f'{e^x} + f{e^x} + g'{e^{2x}} + 2g{e^{2x}}"
Let
"f'{e^x} + g'{e^{2x}} = 0\\,\\,\\,(*)"
Then
"y' = f{e^x} + 2g{e^{2x}} \\Rightarrow y'' = f'{e^x} + f{e^x} + 2g'{e^{2x}} + 4g{e^{2x}}"
Substitute in the original equation
"f'{e^x} + f{e^x} + 2g'{e^{2x}} + 4g{e^{2x}} - 3\\left( {f{e^x} + 2g{e^{2x}}} \\right) + 2\\left( {f{e^x} + g{e^{2x}}} \\right) = \\frac{{{e^x}}}{{1 + {e^x}}}"
"f'{e^x} + 2g'{e^{2x}} = \\frac{{{e^x}}}{{1 + {e^x}}}"
Together with (*) we have a system of equations
"\\left\\{ \\begin{array}{l}\nf'{e^x} + 2g'{e^{2x}} = \\frac{{{e^x}}}{{1 + {e^x}}}\\\\\nf'{e^x} + g'{e^{2x}} = 0\n\\end{array} \\right."
from 2-nd eauation:
"f' = - g'{e^x}"
Substitute in the 1-st equation
"- g'{e^{2x}} + 2g'{e^{2x}} = \\frac{{{e^x}}}{{1 + {e^x}}}"
"g' = \\frac{{{e^{ - x}}}}{{1 + {e^x}}}"
"g = \\int {\\frac{{{e^{ - x}}}}{{1 + {e^x}}}dx = - x - {e^{ - x}}} + \\ln ({e^x} + 1) + {C_1}"
"f' = - g'{e^x} = - \\frac{1}{{1 + {e^x}}} \\Rightarrow f = - \\int {\\frac{1}{{1 + {e^x}}}} dx = \\ln ({e^x} + 1) - x + {C_2}"
Then
"y = f{e^x} + g{e^{2x}} = \\left( {\\ln ({e^x} + 1) - x + {C_2}} \\right){e^x} + \\left( { - x - {e^{ - x}} + \\ln ({e^x} + 1) + {C_1}} \\right){e^{2x}}"
Answer: "y = \\left( {\\ln ({e^x} + 1) - x + {C_2}} \\right){e^x} + \\left( { - x - {e^{ - x}} + \\ln ({e^x} + 1) + {C_1}} \\right){e^{2x}}"
Comments
Leave a comment