Answer to Question #229305 in Differential Equations for Hridoy

Question #229305
Solve it
(D^2+DD'-6D'^2)z= ysinx
1
Expert's answer
2021-08-25T11:39:07-0400

Auxiliary equation will be


m2+m6=0m^2+m-6=0

(m2)(m+3)=0(m-2)(m+3)=0

m1=2,m2=3m_1=2, m_2=-3

Hence


C.F.=ϕ1(y+2x)+ϕ2(y3x)C.F.=\phi_1(y+2x)+\phi_2(y-3x)

P.I.=1D2+DD6D2ysinxP.I.=\dfrac{1}{D^2+DD'-6D'^2}y\sin x

=I.P. of eix1(D+i)2+(D+i)(D+0)6(D0)2y=I.P.\ of\ e^{ix}\dfrac{1}{(D+i)^2+(D+i)(D'+0)-6(D'-0)^2}y

=I.P. of eix1D21+2iD+DD+iD6D2y=I.P.\ of\ e^{ix}\dfrac{1}{D^2-1+2iD+DD'+iD'-6D'^2}y

=I.P. of eix1D2+DD6D2+i(2D+D)1y=I.P.\ of\ e^{ix}\dfrac{1}{D^2+DD'-6D'^2+i(2D+D')-1}y

=I.P. of eix11[D2+DD6D2+i(2D+D)]y=I.P.\ of\ -e^{ix}\dfrac{1}{1-[D^2+DD'-6D'^2+i(2D+D')]}y

Using binomial expansion


P.I.=I.P. of eix(1+[i(2D+D)+D2+DD6D2])yP.I.=I.P.\ of\ -e^{ix}(1+[i(2D+D')+D^2+DD'-6D'^2])y

=I.P. of eix(y+i)=I.P.\ of\ -e^{ix}(y+i)

=I.P. of (cosxisinx)(y+i)=I.P.\ of\ -(\cos x-i\sin x)(y+i)

P.I.=cosxysinxP.I.=-\cos x-y\sin x

Hence the general solution is given by


y=ϕ1(y+2x)+ϕ2(y3x)(cosx+ysinx)y=\phi_1(y+2x)+\phi_2(y-3x)-(\cos x+y\sin x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment