Auxiliary equation will be
m2+m−6=0
(m−2)(m+3)=0
m1=2,m2=−3 Hence
C.F.=ϕ1(y+2x)+ϕ2(y−3x)
P.I.=D2+DD′−6D′21ysinx
=I.P. of eix(D+i)2+(D+i)(D′+0)−6(D′−0)21y
=I.P. of eixD2−1+2iD+DD′+iD′−6D′21y
=I.P. of eixD2+DD′−6D′2+i(2D+D′)−11y
=I.P. of −eix1−[D2+DD′−6D′2+i(2D+D′)]1y Using binomial expansion
P.I.=I.P. of −eix(1+[i(2D+D′)+D2+DD′−6D′2])y
=I.P. of −eix(y+i)
=I.P. of −(cosx−isinx)(y+i)
P.I.=−cosx−ysinx Hence the general solution is given by
y=ϕ1(y+2x)+ϕ2(y−3x)−(cosx+ysinx)
Comments
Leave a comment