Question #228753
Solve the following differential equation.
(3x +2y +y2)dx+(x+4xy+5y2)dy = 0.
Help please
1
Expert's answer
2021-08-27T10:01:52-0400

Solution

Check the exactness of the equation:

M=3x+2y+y2M=3x+2y+y^2

N=x+4xy+5y2N=x+4xy+5y^2

dMdy=2+2y\frac{dM}{dy}=2+2y

dNdx=1+4y\frac{dN}{dx}=1+4y

Clearly,

dMdydNdx\frac{dM}{dy}\neq\frac{dN}{dx}

The equation is not exact.

Take 4x+4y24x+4y^2 as the integrating factor;

M=(3x+2y+y2)(4x+4y2)M'=(3x+2y+y^2)(4x+4y^2)

M=12x2+8xy+16xy2+8y3+4y4M'=12x^2+8xy+16xy^2+8y^3+4y^4

Hence

dMdy=8x+32xy+24y2+16y3\frac{dM'}{dy}=8x+32xy+24y^2+16y^3

N=(x+4xy+5y2)(4x+4y2)N'=(x+4xy+5y^2)(4x+4y^2)

N=4x2+16x2y+24xy2+16xy3+20y4N'=4x^2+16x^2y+24xy^2+16xy^3+20y^4

dNdx=8x+32xy+24y2+16y3\frac{dN'}{dx}=8x+32xy+24y^2+16y^3

in which

dMdy=dNdx\frac{dM'}{dy}=\frac{dN'}{dx}

The equation is now exact.

The general solution is

Mdx+(\int M'dx+\int( Terms in N independent of x)dy=C)dy=C

(12x2+8xy+16xy2+8y3+4y4)dx+20y4dy=C\int(12x^2+8xy+16xy^2+8y^3+4y^4)dx+\int20y^4dy=C

=4x3+4x2y+8x2y2+8xy3+4xy4+4y5=C=4x^3+4x^2y+8x^2y^2+8xy^3+4xy^4+4y^5=C
















Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS