Solution
Check the exactness of the equation:
M=3x+2y+y2
N=x+4xy+5y2
dydM=2+2y
dxdN=1+4y
Clearly,
dydM=dxdN
The equation is not exact.
Take 4x+4y2 as the integrating factor;
M′=(3x+2y+y2)(4x+4y2)
M′=12x2+8xy+16xy2+8y3+4y4
Hence
dydM′=8x+32xy+24y2+16y3
N′=(x+4xy+5y2)(4x+4y2)
N′=4x2+16x2y+24xy2+16xy3+20y4
dxdN′=8x+32xy+24y2+16y3
in which
dydM′=dxdN′
The equation is now exact.
The general solution is
∫M′dx+∫( Terms in N independent of x)dy=C
∫(12x2+8xy+16xy2+8y3+4y4)dx+∫20y4dy=C
=4x3+4x2y+8x2y2+8xy3+4xy4+4y5=C
Comments