Solve the following homogeneous differential equation 2x3 y' = y(2x2− y2)
2x3y′ =y(2x2−y2) Substitute y=vx2x3(xv′+v)=2x2⋅vx−v3x32(xv′+v)=2v−v32xv′=−v32xdvdx=−v3dvv3=−dx2x−∫2dvv3=∫dxx1v2=lnx+Cv2=1lnx+Cy2x2=1lnx+C ⟹ y2=x2lnx+C\displaystyle 2x^3y' = y(2x^2 - y^2) \\ \textsf{Substitute}\,\,\, y = vx\\ 2x^3(xv' + v) = 2x^2\cdot vx - v^3 x^3\\ 2(xv' + v) = 2v - v^3\\ 2xv' = -v^3\\ 2x \frac{\mathrm{d}v}{\mathrm{d}x} = -v^3\\ \frac{\mathrm{d}v}{v^3} = -\frac{\mathrm{d}x}{2x}\\ -\int \frac{2\mathrm{d}v}{v^3} = \int\frac{\mathrm{d}x}{x}\\ \frac{1}{v^2} = \ln{x} + C\\ v^2 = \frac{1}{\ln{x} + C}\\ \frac{y^2}{x^2} = \frac{1}{\ln{x} + C}\\ \implies y^2 = \frac{x^2}{\ln{x} + C}2x3y′ =y(2x2−y2) Substitutey=vx2x3(xv′+v)=2x2⋅vx−v3x32(xv′+v)=2v−v32xv′=−v32xdxdv=−v3v3dv=−2xdx−∫v32dv=∫xdxv21=lnx+Cv2=lnx+C1x2y2=lnx+C1⟹y2=lnx+Cx2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments