Solve the following homogeneous differential equation 2x3 y' = y(2x2 − y2)
2x3y′=2x2y−y3dydx=2x2y−y32x3put y=vxv+xdvdx=2v−v32v+xdvdx=v−v32xdvdx=−v322dvv3=−dxx−1v2=−lnx+cv2=−1c−lnxy2x2=1lnx+C (put C=−c)This is the required solution.2x^3y'=2x^2y-y^3\\ \frac{dy}{dx}=\frac{2x^2y-y^3}{2x^3}\\ \text{put\,} y=vx\\ v+x\frac{dv}{dx}=\frac{2v-v^3}{2}\\ v+x\frac{dv}{dx}=v-\frac{v^3}{2}\\ x\frac{dv}{dx}=-\frac{v^3}{2}\\ 2\frac{dv}{v^3}=-\frac{dx}{x}\\ \frac{-1}{v^2}=-lnx+c\\ v^2=\frac{-1}{c-lnx}\\ \frac{y^2}{x^2}=\frac{1}{lnx+C}\space(put\space C=-c)\\ \text{This is the required solution.} \\2x3y′=2x2y−y3dxdy=2x32x2y−y3puty=vxv+xdxdv=22v−v3v+xdxdv=v−2v3xdxdv=−2v32v3dv=−xdxv2−1=−lnx+cv2=c−lnx−1x2y2=lnx+C1 (put C=−c)This is the required solution.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments