Question #229039

Solve the differential equation given by

(3x + 2y + y^2)dx + (x+4xy+5y^2)dy=0


1
Expert's answer
2021-08-26T17:01:55-0400
Qx=1+4y,Py=2+2y\dfrac{\partial Q}{\partial x}=1+4y, \dfrac{\partial P}{\partial y}=2+2yQxPy\dfrac{\partial Q}{\partial x}\not=\dfrac{\partial P}{\partial y}μ=x+y2\mu=x+y^2(x+y2)(3x+2y+y2)dx(x+y^2)(3x + 2y + y^2)dx+(x+y2)(x+4xy+5y2)dy=0+ (x+y^2)(x+4xy+5y^2)dy=0P=3x2+2xy+xy2+3xy2+2y3+y4P=3x^2+2xy+xy^2+3xy^2+2y^3+y^4Py=2x+8xy+6y2+4y3\dfrac{\partial P}{\partial y}=2x+8xy+6y^2+4y^3Q=x2+4x2y+5xy2+xy2+4xy3+5y4Q=x^2+4x^2y+5xy^2+xy^2+4xy^3+5y^4Qx=2x+8xy+6y2+4y3\dfrac{\partial Q}{\partial x}=2x+8xy+6y^2+4y^3Py=Qx\dfrac{\partial P}{\partial y}=\dfrac{\partial Q}{\partial x}ux=3x2+2xy+4xy2+2y3+y4\dfrac{\partial u}{\partial x}=3x^2+2xy+4xy^2+2y^3+y^4

Integrate



u=x3+x2y+2x2y2+2xy3+xy4+φ(y)u=x^3+x^2y+2x^2y^2+2xy^3+xy^4+\varphi(y)

Then


uy=x2+4x2y+6xy2+4xy3+φ(y)\dfrac{\partial u}{\partial y}=x^2+4x^2y+6xy^2+4xy^3+\varphi'(y)=Q=x2+4x2y+6xy2+4xy3+5y4=Q=x^2+4x^2y+6xy^2+4xy^3+5y^4φ(y)=5y4\varphi'(y)=5y^4φ(y)=y5+C\varphi(y)=y^5+C

The original differential equation has the following solution



x3+x2y+2x2y2+2xy3+xy4y5=Cx^3+x^2y+2x^2y^2+2xy^3+xy^4-y^5=C

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS