Question #229105

Solve y+px=p²x⁴


1
Expert's answer
2021-08-25T18:26:19-0400

The given differential equation is


y+px=p2x4y+px=p^2x^4

Differentiating with respect to x,x, we get 


dydx+p+xdpdx=2px4dpdx+4p2x3\dfrac{dy}{dx}+p+x\dfrac{dp}{dx}=2px^4\dfrac{dp}{dx}+4p^2x^3

p+p+xdpdx=2px4dpdx+4p2x3p+p+x\dfrac{dp}{dx}=2px^4\dfrac{dp}{dx}+4p^2x^3

dpdx(x2px4)=4p2x32p\dfrac{dp}{dx}(x-2px^4)=4p^2x^3-2p

x(12px3)dpdx=2p(12px3)x(1-2px^3)\dfrac{dp}{dx}=-2p(1-2px^3)

12px3=01-2px^3=0

p=12x3p=\dfrac{1}{2x^3}

Substitute


y+(12x3)x=(12x3)2x4y+(\dfrac{1}{2x^3})x=(\dfrac{1}{2x^3})^2x^4

y=12x2+14x2y=-\dfrac{1}{2x^2}+\dfrac{1}{4x^2}

y=14x2y=-\dfrac{1}{4x^2}

xdpdx=2px\dfrac{dp}{dx}=-2p

dpp+2dxx=0\dfrac{dp}{p}+2\dfrac{dx}{x}=0

Integrating, we get


lnp+lnx2=lnC\ln|p|+\ln x^2=\ln C

px2=Cpx^2=C

Substitute


px=Cxpx=\dfrac{C}{x}


(px2)2=p2x4=C2(px^2)^2=p^2x^4=C^2


y+px=p2x4y+px=p^2x^4

Then


y+Cx=C2y+\dfrac{C}{x}=C^2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS