The given differential equation is
y+px=p2x4 Differentiating with respect to x, we get
dxdy+p+xdxdp=2px4dxdp+4p2x3
p+p+xdxdp=2px4dxdp+4p2x3
dxdp(x−2px4)=4p2x3−2p
x(1−2px3)dxdp=−2p(1−2px3)
1−2px3=0
p=2x31 Substitute
y+(2x31)x=(2x31)2x4
y=−2x21+4x21
y=−4x21
xdxdp=−2p
pdp+2xdx=0 Integrating, we get
ln∣p∣+lnx2=lnC
px2=C Substitute
px=xC
(px2)2=p2x4=C2
y+px=p2x4 Then
y+xC=C2
Comments