. Solve the following homogeneous differential equation: (x + 2y)dx − xdy = 0
(x+2y)dx−xdy=0⇒dydx=x+2yx⇒y′=1+2yx\left( {x + 2y} \right)dx - xdy = 0 \Rightarrow \frac{{dy}}{{dx}} = \frac{{x + 2y}}{x} \Rightarrow y' = 1 + 2\frac{y}{x}(x+2y)dx−xdy=0⇒dxdy=xx+2y⇒y′=1+2xy
Let
yx=t⇒y=tx⇒y′=t′x+t\frac{y}{x} = t \Rightarrow y = tx \Rightarrow y' = t'x + txy=t⇒y=tx⇒y′=t′x+t
Then
t′x+t=1+2t⇒xdtdx=1+t⇒dt1+t=dxx⇒ln(1+t)=lnx+lnC⇒1+t=Cx⇒1+yx=Cx⇒y=x(Cx−1)⇒y=Cx2−xt'x + t = 1 + 2t \Rightarrow x\frac{{dt}}{{dx}} = 1 + t \Rightarrow \frac{{dt}}{{1 + t}} = \frac{{dx}}{x} \Rightarrow \ln (1 + t) = \ln x + \ln C \Rightarrow 1 + t = Cx \Rightarrow 1 + \frac{y}{x} = Cx \Rightarrow y = x\left( {Cx - 1} \right) \Rightarrow y = C{x^2} - xt′x+t=1+2t⇒xdxdt=1+t⇒1+tdt=xdx⇒ln(1+t)=lnx+lnC⇒1+t=Cx⇒1+xy=Cx⇒y=x(Cx−1)⇒y=Cx2−x
Answer: y=Cx2−xy = C{x^2} - xy=Cx2−x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments