Question #228824

. Solve the following homogeneous differential equation: (x + 2y)dx − xdy = 0


1
Expert's answer
2021-08-24T07:22:33-0400

(x+2y)dxxdy=0dydx=x+2yxy=1+2yx\left( {x + 2y} \right)dx - xdy = 0 \Rightarrow \frac{{dy}}{{dx}} = \frac{{x + 2y}}{x} \Rightarrow y' = 1 + 2\frac{y}{x}

Let

yx=ty=txy=tx+t\frac{y}{x} = t \Rightarrow y = tx \Rightarrow y' = t'x + t

Then

tx+t=1+2txdtdx=1+tdt1+t=dxxln(1+t)=lnx+lnC1+t=Cx1+yx=Cxy=x(Cx1)y=Cx2xt'x + t = 1 + 2t \Rightarrow x\frac{{dt}}{{dx}} = 1 + t \Rightarrow \frac{{dt}}{{1 + t}} = \frac{{dx}}{x} \Rightarrow \ln (1 + t) = \ln x + \ln C \Rightarrow 1 + t = Cx \Rightarrow 1 + \frac{y}{x} = Cx \Rightarrow y = x\left( {Cx - 1} \right) \Rightarrow y = C{x^2} - x

Answer: y=Cx2xy = C{x^2} - x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS