Answer to Question #221506 in Differential Equations for Yey

Question #221506

Solve the equation. y′′−6y′+9y=0 ;  y(0)=2,y′(0)=−4

a. using differential equation method

b. using Laplace transformation method


1
Expert's answer
2021-07-29T16:46:27-0400

a. Characteristic equation:

k26k+9=0{k^2} - 6k + 9 = 0

(k3)2=0{(k - 3)^2} = 0

k1=k2=3{k_1} = {k_2} = 3

Then

y=C1e3x+xC2e3xy=3C1e3x+C2e3x+3xC2e3xy = {C_1}{e^{3x}} + x{C_2}{e^{3x}} \Rightarrow y' = 3{C_1}{e^{3x}} + {C_2}{e^{3x}} + 3x{C_2}{e^{3x}}

y(0)=2,y(0)=4{C1=23C1+C2=4C1=2,C2=10y(0) = 2,\,y'(0) = - 4 \Rightarrow \left\{ {\begin{matrix} {{C_1} = 2}\\ {3{C_1} + {C_2} = - 4} \end{matrix}} \right. \Rightarrow {C_1} = 2,\,{C_2} = - 10

Then

y=2e3x10xe3xy = 2{e^{3x}} - 10x{e^{3x}}

Answer: y=2e3x10xe3xy = 2{e^{3x}} - 10x{e^{3x}}

b. Moving from originals to images:

yYy \to Y

ypYy(0)=pY2y' \to pY - y(0) = pY - 2

yp2Ypy(0)y(0)=p2Y2p+4y'' \to {p^2}Y - py(0) - y'(0) = {p^2}Y - 2p + 4

Then

p2Y2p+46(pY2)+9Y=0{p^2}Y - 2p + 4 - 6\left( {pY - 2} \right) + 9Y = 0

Y(p26p+9)=2p412Y\left( {{p^2} - 6p + 9} \right) = 2p - 4 - 12

Y=2p16p26p+9=2p16(p3)2=2p310(p3)2Y = \frac{{2p - 16}}{{{p^2} - 6p + 9}} = \frac{{2p - 16}}{{{{(p - 3)}^2}}} = \frac{2}{{p - 3}} - \frac{{10}}{{{{(p - 3)}^2}}}

YyY \leftarrow y

1p3e3x\frac{1}{{p - 3}} \leftarrow {e^{3x}}

1(p3)2xe3x\frac{1}{{{{\left( {p - 3} \right)}^2}}} \leftarrow x{e^{3x}}

Then

y=2e3x10xe3xy = 2{e^{3x}} - 10x{e^{3x}}

Answer: y=2e3x10xe3xy = 2{e^{3x}} - 10x{e^{3x}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment