a. Characteristic equation:
k2−6k+9=0
(k−3)2=0
k1=k2=3
Then
y=C1e3x+xC2e3x⇒y′=3C1e3x+C2e3x+3xC2e3x
y(0)=2,y′(0)=−4⇒{C1=23C1+C2=−4⇒C1=2,C2=−10
Then
y=2e3x−10xe3x
Answer: y=2e3x−10xe3x
b. Moving from originals to images:
y→Y
y′→pY−y(0)=pY−2
y′′→p2Y−py(0)−y′(0)=p2Y−2p+4
Then
p2Y−2p+4−6(pY−2)+9Y=0
Y(p2−6p+9)=2p−4−12
Y=p2−6p+92p−16=(p−3)22p−16=p−32−(p−3)210
Y←y
p−31←e3x
(p−3)21←xe3x
Then
y=2e3x−10xe3x
Answer: y=2e3x−10xe3x
Comments
Leave a comment