Question #221444
By method variation of parameter solve the ODE(D^2+4)y=2 cosec2x
1
Expert's answer
2021-07-29T16:35:36-0400

(D2+4)y=y+4y=2cosec2x\left( {{D^2} + 4} \right)y = y'' + 4y = 2{\rm{cosec}}2x

Characteristic equation:

k2+4=0k2=4k=±2i{k^2} + 4 = 0 \Rightarrow {k^2} = - 4 \Rightarrow k = \pm 2i

Then the general so lution of the homogeneous equation is

y0=C1cos2x+C2sin2x{y_0} = {C_1}\cos 2x + {C_2}\sin 2x

Let

C1=f(x),C2=g(x){C_1} = f(x),\,\,{C_2} = g(x)

Then

y=fcos2x+gsin2xy=fcos2x2fsin2x+gsin2x+2gcos2xy = f\cos 2x + g\sin 2x \Rightarrow y' = f'\cos 2x - 2f\sin 2x + g'\sin 2x + 2g\cos 2x

Let

fcos2x+gsin2x=0()f'\cos 2x + g'\sin 2x = 0\,\,\,\,(*)

Then

y=2fsin2x+2gcos2xy=2fsin2x4fcos2x+2gcos2x4gsin2xy' = - 2f\sin 2x + 2g\cos 2x \Rightarrow y'' = - 2f'\sin 2x - 4f\cos 2x + 2g'\cos 2x - 4g\sin 2x

Substitute the found values ​​into the original equation:

2fsin2x4fcos2x+2gcos2x4gsin2x+4fcos2x+4gsin2x=2cosec2x- 2f'\sin 2x - 4f\cos 2x + 2g'\cos 2x - 4g\sin 2x + 4f\cos 2x + 4g\sin 2x = 2{\rm{cosec}}2x

2fsin2x+2gcos2x=2cosec2x- 2f'\sin 2x + 2g'\cos 2x = 2{\rm{cosec}}2x

Together with equation (*) we have the system of equations:

{2fsin2x+2gcos2x=2cosec2xfcos2x+gsin2x=0\left\{ \begin{array}{l} - 2f'\sin 2x + 2g'\cos 2x = 2{\rm{cosec}}2x\\ f'\cos 2x + g'\sin 2x = 0 \end{array} \right.

From the second equation we obtain

g=fcos2xsin2xg' = - f' \cdot \frac{{\cos 2x}}{{\sin 2x}}

Substitute the found value into the first equation:

2fsin2x+2(fcos2xsin2x)cos2x=2cosec2x- 2f'\sin 2x + 2\left( { - f' \cdot \frac{{\cos 2x}}{{\sin 2x}}} \right)\cos 2x = 2{\rm{cosec}}2x

2fsin2x2fcos22xsin2x=2sin2x- 2f'\sin 2x - 2f' \cdot \frac{{{{\cos }^2}2x}}{{\sin 2x}} = \frac{2}{{\sin 2x}}

2fsin22x+cos22xsin2x=2sin2x- 2f' \cdot \frac{{{{\sin }^2}2x + {{\cos }^2}2x}}{{\sin 2x}} = \frac{2}{{\sin 2x}}

2fsin2x=2sin2x\frac{{ - 2f'}}{{\sin 2x}} = \frac{2}{{\sin 2x}}

f=1f=x+C3f' = - 1 \Rightarrow f = - x + {C_3}

g=fcos2xsin2x=cos2xsin2xg=cos2xsin2xdx=12dsin2xsin2x=12lnsin2x+C4g' = - f' \cdot \frac{{\cos 2x}}{{\sin 2x}} = \frac{{\cos 2x}}{{\sin 2x}} \Rightarrow g = \int {\frac{{\cos 2x}}{{\sin 2x}}dx} = \frac{1}{2}\int {\frac{{d\sin 2x}}{{\sin 2x}} = \frac{1}{2}} \ln |\sin 2x| + {C_4}

Then

y=fcos2x+gsin2x=(x+C3)cos2x+(12lnsin2x+C4)sin2xy = f\cos 2x + g\sin 2x = \left( { - x + {C_3}} \right)\cos 2x + \left( {\frac{1}{2}\ln |\sin 2x| + {C_4}} \right)\sin 2x

Answer: y=(x+C3)cos2x+(12lnsin2x+C4)sin2xy =\left( { - x + {C_3}} \right)\cos 2x + \left( {\frac{1}{2}\ln |\sin 2x| + {C_4}} \right)\sin 2x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS