(D2+4)y=y′′+4y=2cosec2x
Characteristic equation:
k2+4=0⇒k2=−4⇒k=±2i
Then the general so lution of the homogeneous equation is
y0=C1cos2x+C2sin2x
Let
C1=f(x),C2=g(x)
Then
y=fcos2x+gsin2x⇒y′=f′cos2x−2fsin2x+g′sin2x+2gcos2x
Let
f′cos2x+g′sin2x=0(∗)
Then
y′=−2fsin2x+2gcos2x⇒y′′=−2f′sin2x−4fcos2x+2g′cos2x−4gsin2x
Substitute the found values into the original equation:
−2f′sin2x−4fcos2x+2g′cos2x−4gsin2x+4fcos2x+4gsin2x=2cosec2x
−2f′sin2x+2g′cos2x=2cosec2x
Together with equation (*) we have the system of equations:
{−2f′sin2x+2g′cos2x=2cosec2xf′cos2x+g′sin2x=0
From the second equation we obtain
g′=−f′⋅sin2xcos2x
Substitute the found value into the first equation:
−2f′sin2x+2(−f′⋅sin2xcos2x)cos2x=2cosec2x
−2f′sin2x−2f′⋅sin2xcos22x=sin2x2
−2f′⋅sin2xsin22x+cos22x=sin2x2
sin2x−2f′=sin2x2
f′=−1⇒f=−x+C3
g′=−f′⋅sin2xcos2x=sin2xcos2x⇒g=∫sin2xcos2xdx=21∫sin2xdsin2x=21ln∣sin2x∣+C4
Then
y=fcos2x+gsin2x=(−x+C3)cos2x+(21ln∣sin2x∣+C4)sin2x
Answer: y=(−x+C3)cos2x+(21ln∣sin2x∣+C4)sin2x
Comments