Answer:-
General solution of y′′+4y=0 is y=Acos2x+Bsin2x.
Let y=A(x)cos2x+B(x)sin2x and A′(x)cos2x+B′(x)sin2x=0. Then y′=−2A(x)sin2x+2B(x)cos2x and so y′′=−2A′(x)sin2x+2B′(x)cos2x−4A(x)cos2x−4B(x)sin2x.
We have 2sin2x1=y′′+4y=−2A′(x)sin2x+2B′(x)cos2x. Also we have A′(x)cos2x+B′(x)sin2x=0.
−1=0⋅2cos2x−2sin2x1sin2x=
=2(A′(x)cos2x+B′(x)2sin2x)cos2x−
−(−2A′(x)sin2x+2B′(x)cos2x)sin2x=2A′(x), so A′(x)=−21 and A(x)=−21x+A
Since 0=A′(x)cos2x+B′(x)sin2x=−21cos2x+B′(x)sin2x, we have B′(x)=21sin2xcos2x. Then dB=21sin2xcos2x=41sin2xdsin2x=41dln∣sin2x∣ and B(x)=41ln∣sin2x∣+B
We obtain y=(−21x+A)cos2x+(41ln∣sin2x∣+B)sin2x
Answer: y=(−21x+A)cos2x+(41ln∣sin2x∣+B)sin2x
Comments