Question #221447
By method variation of parameters solve the ODE(D^2+4)y=2 cosec2x?
1
Expert's answer
2021-07-29T16:36:02-0400

Answer:-

General solution of y+4y=0y''+4y=0 is y=Acos2x+Bsin2xy=A\cos 2x+B\sin 2x.

Let y=A(x)cos2x+B(x)sin2xy=A(x)\cos 2x+B(x)\sin 2x and A(x)cos2x+B(x)sin2x=0A'(x)\cos 2x+B'(x)\sin2x=0. Then y=2A(x)sin2x+2B(x)cos2xy'=-2A(x)\sin 2x+2B(x)\cos 2x and so y=2A(x)sin2x+2B(x)cos2x4A(x)cos2x4B(x)sin2xy''=-2A'(x)\sin 2x+2B'(x)\cos 2x-4A(x)\cos 2x-4B(x)\sin 2x.

We have 12sin2x=y+4y=2A(x)sin2x+2B(x)cos2x\frac{1}{2\sin 2x}=y''+4y=-2A'(x)\sin 2x+2B'(x)\cos 2x. Also we have A(x)cos2x+B(x)sin2x=0A'(x)\cos 2x+B'(x)\sin2x=0.


1=02cos2x12sin2xsin2x=-1=0\cdot 2\cos 2x-\frac{1}{2\sin 2x}\sin 2x=

=2(A(x)cos2x+B(x)2sin2x)cos2x=2(A'(x)\cos 2x+B'(x)2\sin2x)\cos 2x-

(2A(x)sin2x+2B(x)cos2x)sin2x=2A(x)-(-2A'(x)\sin 2x+2B'(x)\cos 2x)\sin 2x=2A'(x), so A(x)=12A'(x)=-\frac{1}{2} and A(x)=12x+AA(x)=-\frac{1}{2}x+A


Since 0=A(x)cos2x+B(x)sin2x=12cos2x+B(x)sin2x0=A'(x)\cos 2x+B'(x)\sin2x=-\frac{1}{2}\cos 2x+B'(x)\sin2x, we have B(x)=12cos2xsin2xB'(x)=\frac{1}{2}\frac{\cos 2x}{\sin 2x}. Then dB=12cos2xsin2x=14dsin2xsin2x=14dlnsin2xdB=\frac{1}{2}\frac{\cos 2x}{\sin 2x}=\frac{1}{4}\frac{d\sin 2x}{\sin 2x}=\frac{1}{4}d\ln|\sin 2x| and B(x)=14lnsin2x+BB(x)=\frac{1}{4}\ln|\sin 2x|+B


We obtain y=(12x+A)cos2x+(14lnsin2x+B)sin2xy=\left(-\frac{1}{2}x+A\right)\cos 2x+\left(\frac{1}{4}\ln|\sin 2x|+B\right)\sin 2x

Answer: y=(12x+A)cos2x+(14lnsin2x+B)sin2xy=\left(-\frac{1}{2}x+A\right)\cos 2x+\left(\frac{1}{4}\ln|\sin 2x|+B\right)\sin 2x



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS