Given the equation
y ′ ′ + x y ′ + ( x 2 + 2 ) y = 0 y''+xy'+(x^2+2)y=0 y ′′ + x y ′ + ( x 2 + 2 ) y = 0
The above is a Sturm-Liouville equation which can be written as:
d d x ( e x 2 / 2 y ′ ( x ) ) + e x 2 / 2 ( 2 + x 2 ) y ( x ) = 0 \frac{d}{d x}\left(e^{x^{2} / 2} y^{\prime}(x)\right)+e^{x^{2} / 2}\left(2+x^{2}\right) y(x)=0 d x d ( e x 2 /2 y ′ ( x ) ) + e x 2 /2 ( 2 + x 2 ) y ( x ) = 0
The solution of the above equation is:
y ( x ) = c 1 e − 1 / 4 i ( 3 + − i ) x 2 H − 1 2 i ( − i + 3 ) ( ( 1 2 + i 2 ) 3 4 x ) + c 2 e − 1 / 4 i ( 3 + − i ) x 2 1 F 1 ( 1 4 + i 3 4 ; 1 2 ; 1 2 i 3 x 2 ) \begin{gathered}
y(x)=c_{1} e^{-1 / 4 i(\sqrt{3}+-i) x^{2}} H_{-\frac{1}{2}} i(-i+\sqrt{3})\left(\left(\frac{1}{2}+\frac{i}{2}\right) \sqrt[4]{3} x\right)+ \\
c_{2} e^{-1 / 4 i(\sqrt{3}+-i) x^{2}}{ }_{1} F_{1}\left(\frac{1}{4}+\frac{i \sqrt{3}}{4} ; \frac{1}{2} ; \frac{1}{2} i \sqrt{3} x^{2}\right)
\end{gathered} y ( x ) = c 1 e − 1/4 i ( 3 +− i ) x 2 H − 2 1 i ( − i + 3 ) ( ( 2 1 + 2 i ) 4 3 x ) + c 2 e − 1/4 i ( 3 +− i ) x 2 1 F 1 ( 4 1 + 4 i 3 ; 2 1 ; 2 1 i 3 x 2 )
Where
H n ( x ) H_n(x) H n ( x ) is the nth polynomial in x; and
1 F 1 ( a ; b ; x ) _1F_1(a;b;x) 1 F 1 ( a ; b ; x ) is the Kummer confluent hypergeometric function.
Comments