Answer to Question #221428 in Differential Equations for Suhaib

Question #221428

𝑦``+π‘₯𝑦`+(π‘₯2+2)𝑦=0


1
Expert's answer
2021-09-15T02:57:15-0400

Given the equation



yβ€²β€²+xyβ€²+(x2+2)y=0y''+xy'+(x^2+2)y=0

The above is a Sturm-Liouville equation which can be written as:


ddx(ex2/2yβ€²(x))+ex2/2(2+x2)y(x)=0\frac{d}{d x}\left(e^{x^{2} / 2} y^{\prime}(x)\right)+e^{x^{2} / 2}\left(2+x^{2}\right) y(x)=0

The solution of the above equation is:


y(x)=c1eβˆ’1/4i(3+βˆ’i)x2Hβˆ’12i(βˆ’i+3)((12+i2)34x)+c2eβˆ’1/4i(3+βˆ’i)x21F1(14+i34;12;12i3x2)\begin{gathered} y(x)=c_{1} e^{-1 / 4 i(\sqrt{3}+-i) x^{2}} H_{-\frac{1}{2}} i(-i+\sqrt{3})\left(\left(\frac{1}{2}+\frac{i}{2}\right) \sqrt[4]{3} x\right)+ \\ c_{2} e^{-1 / 4 i(\sqrt{3}+-i) x^{2}}{ }_{1} F_{1}\left(\frac{1}{4}+\frac{i \sqrt{3}}{4} ; \frac{1}{2} ; \frac{1}{2} i \sqrt{3} x^{2}\right) \end{gathered}


Where

Hn(x)H_n(x) is the nth polynomial in x; and

1F1(a;b;x)_1F_1(a;b;x) is the Kummer confluent hypergeometric function.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment