Question #221427
Find the general solution of the ordinary differential equation (D2+2D+1)y=e^-xlnx using method of variation of parameters.
1
Expert's answer
2021-08-02T10:52:15-0400

Let us find the general solution of the ordinary differential equation (D2+2D+1)y=exlnx(D^2+2D+1)y=e^{-x}\ln x using method of variation of parameters. The characteristic equation k2+2k+1=0k^2+2k+1=0 of the homogeneous differential equation is equivalent to (k+1)2=0,(k+1)^2=0, and hence has the roots k1=k2=1.k_1=k_2=-1. The general solution of the non-homogeneous equation is of the form y=C1(x)ex+C2(x)xex.y=C_1(x)e^{-x}+C_2(x)xe^{-x}.


Therefore, we should solve the following system


{C1ex+C2xex=0C1ex+C2exC2xex=exlnx\begin{cases}C_1'e^{-x}+C_2'xe^{-x}=0\\-C_1'e^{-x}+C_2'e^{-x}-C_2'xe^{-x}=e^{-x}\ln x \end{cases}


which is equivalent to


{C1=C2xC1+C2C2x=lnx\begin{cases}C_1'=-C_2'x\\-C_1'+C_2'-C_2'x=\ln x \end{cases}


{C1=C2xC2x+C2C2x=lnx\begin{cases}C_1'=-C_2'x\\C_2'x+C_2'-C_2'x=\ln x \end{cases}


{C1=C2xC2=lnx\begin{cases}C_1'=-C_2'x\\C_2'=\ln x \end{cases}


{C1=xlnxC2=lnx\begin{cases}C_1'=-x\ln x\\C_2'=\ln x \end{cases}


It follows that


C1(x)=xlnxdx=C_1(x)=-\int x\ln xdx=


|u=lnx,dv=xdx,du=dxx,v=x22u=\ln x, dv =xdx, du=\frac{dx}{x},v=\frac{x^2}{2} |


=12x2lnx+12xdx=-\frac{1}{2}x^2\ln x+\frac{1}{2}\int xdx


=12x2lnx+x24+C1=-\frac{1}{2}x^2\ln x+\frac{x^2}{4}+C_1


C2(x)=lnxdx=C_2(x)=\int\ln xdx=



|u=lnx,dv=dx,du=dxx,v=xu=\ln x, dv =dx,du=\frac{dx}{x}, v=x |


=xlnxdx=x\ln x-\int dx


=xlnxx+C2.=x\ln x-x+C_2.


We conclude that the general solution is


y=(12x2lnx+x24+C1)ex+(xlnxx+C2)xexy=(-\frac{1}{2}x^2\ln x+\frac{x^2}{4}+C_1)e^{-x}+(x\ln x-x+C_2)xe^{-x} or


y=(12x2lnx34x2+C1+C2x)ex.y=(\frac{1}{2}x^2\ln x-\frac{3}{4}x^2+C_1+C_2x)e^{-x}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS