Let us solve the differential equation dΩdr+rtanΩ=cos2Ω.
Firstly, let us divide both parts by cosΩ. Then we have the differential equation
cosΩ1dΩdr+rcosΩ1tanΩ=cosΩ1cos2Ω,
which is equivalent to the equation
cosΩ1dΩdr+rcos2ΩsinΩ=cosΩ1(cos2Ω−sin2Ω),
and hence (rcosΩ1)′=cosΩ−cosΩsin2Ω.
It follows that
rcosΩ1=∫(cosΩ−cosΩsin2Ω)dΩ
=sinΩ−∫cos2Ωsin2Ωd(sinΩ)
=sinΩ+∫sin2Ω−1sin2Ωd(sinΩ)
=sinΩ+∫sin2Ω−1sin2Ω−1+1d(sinΩ)
=sinΩ+sinΩ+∫sin2Ω−11d(sinΩ)
=2sinΩ+21∫(sinΩ−11−sinΩ+11)d(sinΩ)
=2sinΩ+21(ln∣sinΩ−1∣−ln∣sinΩ+1∣)+C
=2sinΩ+21ln∣sinΩ+1sinΩ−1∣+C.
Therefore, the general solution is
r=2sinΩcosΩ+21cosΩln∣sinΩ+1sinΩ−1∣+CcosΩ
or
r=sin2Ω+21cosΩln∣sinΩ+1sinΩ−1∣+CcosΩ.
Comments