Question #220779
dr/dΩ+rTanΩ=cos2Ω
1
Expert's answer
2021-07-28T17:13:45-0400

Let us solve the differential equation drdΩ+rtanΩ=cos2Ω.\frac{dr}{dΩ}+r\tanΩ=\cos2Ω.\\

Firstly, let us divide both parts by cosΩ.\cos\Omega. Then we have the differential equation


1cosΩdrdΩ+r1cosΩtanΩ=1cosΩcos2Ω,\frac{1}{\cos\Omega}\frac{dr}{dΩ}+r\frac{1}{\cos\Omega}\tanΩ=\frac{1}{\cos\Omega}\cos2Ω,


which is equivalent to the equation


1cosΩdrdΩ+rsinΩcos2Ω=1cosΩ(cos2Ωsin2Ω),\frac{1}{\cos\Omega}\frac{dr}{dΩ}+r\frac{\sin\Omega}{\cos^2\Omega}=\frac{1}{\cos\Omega}(\cos^2Ω-\sin^2Ω),


and hence (r1cosΩ)=cosΩsin2ΩcosΩ.(r\frac{1}{\cos\Omega})'=\cosΩ-\frac{\sin^2Ω}{\cos\Omega}.


It follows that


r1cosΩ=(cosΩsin2ΩcosΩ)dΩr\frac{1}{\cos\Omega}=\int(\cosΩ-\frac{\sin^2Ω}{\cos\Omega})d\Omega


=sinΩsin2Ωcos2Ωd(sinΩ)=\sin\Omega-\int\frac{\sin^2Ω}{\cos^2\Omega}d(\sin\Omega)


=sinΩ+sin2Ωsin2Ω1d(sinΩ)= \sin\Omega+\int\frac{\sin^2Ω}{\sin^2\Omega-1}d(\sin\Omega)


=sinΩ+sin2Ω1+1sin2Ω1d(sinΩ)= \sin\Omega+\int\frac{\sin^2Ω-1+1}{\sin^2\Omega-1}d(\sin\Omega)


=sinΩ+sinΩ+1sin2Ω1d(sinΩ)= \sin\Omega+\sin\Omega+\int\frac{1}{\sin^2\Omega-1}d(\sin\Omega)


=2sinΩ+12(1sinΩ11sinΩ+1)d(sinΩ)= 2\sin\Omega+\frac{1}{2}\int(\frac{1}{\sin\Omega-1}-\frac{1}{\sin\Omega+1})d(\sin\Omega)


=2sinΩ+12(lnsinΩ1lnsinΩ+1)+C= 2\sin\Omega+\frac{1}{2}(\ln|\sin\Omega-1|-\ln|\sin\Omega+1|)+C


=2sinΩ+12lnsinΩ1sinΩ+1+C.= 2\sin\Omega+\frac{1}{2}\ln|\frac{\sin\Omega-1}{\sin\Omega+1}|+C.


Therefore, the general solution is


r=2sinΩcosΩ+12cosΩlnsinΩ1sinΩ+1+CcosΩr= 2\sin\Omega\cos\Omega+\frac{1}{2}\cos\Omega\ln|\frac{\sin\Omega-1}{\sin\Omega+1}|+C\cos\Omega

or

r=sin2Ω+12cosΩlnsinΩ1sinΩ+1+CcosΩ.r= \sin2\Omega+\frac{1}{2}\cos\Omega\ln|\frac{\sin\Omega-1}{\sin\Omega+1}|+C\cos\Omega.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS