Question #221128

p²+q²=4


1
Expert's answer
2021-08-30T05:25:33-0400

dxfp=dyfq=dz(pfpqfq)=dp(fx+xfz)=dq(fy+yfz)Since, dq(fy+yfz)=dq0=>q=afrom the given pde, we get=>p=±4a2Then,dz=pdx+qdydz=±4a2dx+adyIntegrating both side, we getz=±4a2x+ay+cNOTE:- We can take either p is constant fromdp(fx+xfz)=dp0or qas a constant.\frac {dx}{-fp} =\frac {dy}{-fq} =\frac {dz}{(-p*fp-q*fq)} =\frac {dp}{(fx+x*fz)} =\frac {dq}{(fy+y*fz)}\\ Since,\space\frac {dq}{(fy+y*fz)}=\frac {dq}{0}\\ =>q=a\\ \text{from the given pde, we get}\\ =>p=\pm \sqrt{4-a^2}\\ Then,\\ dz=pdx+qdy\\ dz=\pm\sqrt{4-a^2}dx+ady\\ \text{Integrating both side, we get}\\ z=\pm\sqrt{4-a^2}x+ay+c\\ \text{NOTE:- We can take either p is constant from} \frac {dp}{(fx+x*fz)}=\frac {dp}{0} \text{or qas a constant.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS