Solve the following differential equation by using separation of variables method: dp/dt =(1+p^2)cos(t)/psin(t)
dpdt=(1+p2)costpsintCross multiplying, we have,dp(psint)=(1+p2)costdt ⟹ p1+p2dp=costsintdtIntegrating both sides, we have 12ln(1+p2)=lnsint+lncTaking the exponential of both sides, we have(1+p2)12=csint\frac{dp}{dt}=\frac{(1+p^2)cost}{psint}\\\text{Cross multiplying, we have,}\\dp(psint)=(1+p^2)costdt\\\implies\frac{p}{1+p^2}dp=\frac{cost}{sint}dt\\\text{Integrating both sides, we have }\\\frac{1}{2}\ln(1+p^2)=\ln sint+\ln c\\\text{Taking the exponential of both sides, we have}\\(1+p^2)^{\frac{1}{2}}=csintdtdp=psint(1+p2)costCross multiplying, we have,dp(psint)=(1+p2)costdt⟹1+p2pdp=sintcostdtIntegrating both sides, we have 21ln(1+p2)=lnsint+lncTaking the exponential of both sides, we have(1+p2)21=csint
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments