By method variation of parameters solve the ODE(D^2+4)y=2 cosec2x?
Solution;
The general solution of the equation is given by;
y=yp+yh
The equation has an auxiliary equation of the form;
P(m)=m2+4=0
m2=-4
m=-2i and m=2i
Hence the homogenous solutions is;
yh=C1cos(2x)+C2sin(2x)
Here;
y1=cos(2x)
y2=sin(2x)
X=2cosec(2x)
det(W)=2(cos2(2x)+sin2(2x))=2(1)=2
For the particular solution;
Let yp=uy1+vy2
=
u=-x
= =
Hence;
yp=-xcos(2x)+ln(sin(2x))sin(2x)
Hence the required solution is ;
y=C1cos(2x)+C2sin(2x)-xcos(2x)+sin(2x)ln(sin(2x))
Comments