Question #221430

Solve 𝑥2𝑦``−3𝑥𝑦`+5𝑦=𝑥2sin(𝑙𝑛𝑥) ;𝑦(1)=1,𝑦`(1)=0


1
Expert's answer
2021-07-29T16:47:40-0400

Solution;

This is a Cauchy Euler differential equation;

Substitute x=etx=e^t hence t=ln(x)

dydx=dydtdtdx=etdydt\frac{dy}{dx}=\frac{dy}{dt}\frac{dt}{dx}=e^{-t}\frac{dy}{dt}

d2ydx2=ddx(etdydt)=e2tdydt+e2td2ydt2\frac{d^2y}{dx^2}=\frac{d}{dx}(e^{-t}\frac{dy}{dt})=-e^{-2t}\frac{dy}{dt}+e^{-2t}\frac{d^2y}{dt^2}

Substitute in the given equation;

e2t(e2tdydt+e2td2ydt2)3et(etdydt)+5y=e2tsin(t)e^{2t}(-e^{-2t}\frac{dy}{dt}+e^{-2t}\frac{d^2y}{dt^2})-3e^t(e^{-t}\frac{dy}{dt})+5y=e^{2t}sin(t)

Simplify;

d2ydt4dydt+5y=e2tsin(t)\frac{d^2y}{dt}-4\frac{dy}{dt}+5y=e^{2t}sin(t)

Above equation is homogeneous;

The characteristic equation ;

r2+4r+5=(r2)2+1r^2+4r+5=(r-2)^2+1

The roots are;

r=2+i and r=2-i

The homogeneous solution;

yh=e2t(C1cos(t)+C2sin(t))y_h=e^{2t}(C_1cos(t)+C_2sin(t))

The particular solution;

yp=t.(e2tAcost+e2tBsint)y_p=t.(e^{2t}Acos t+e^{2t}Bsint)

By distribution;

yp=te2t(Acost+Bsint)y_p=te^{2t}(Acost+Bsint)

Differentiating;

yp=(2te2t+e2t)(Acost+Bsint)+te2t(Asint+Bcost)y'_p=(2te^{2t}+e^{2t})(Acost+Bsint)+te^{2t}(-Asint+Bcost)

Differentiate ;yp=(4te2t+4e2t)(Acost+Bsint)+(4te2t+2e2t)(Asint+Bcost)+te2t(AcostBsint)y''_p=(4te^{2t}+4e^{2t})(Acost+Bsint)+(4te^{2t}+2e^{2t})(-Asint+Bcost)+te^{2t}(-Acost-Bsint)

Substitute into the transformed equation and simplify;

e2t(2Asint+2Bcost)=e2tsinte^{2t}(-2Asint +2Bcost)=e^{2t}sint

Equate the coefficients;

-2A=1;A=-0.5

B=0

Thefore;

yp=12te2tcosty_p=-\frac12te^{2t}cost

Since ;

y=yh+ypy=y_h+y_p

The general solution of the equation is ;

y=e2t(C1cost+C2sint)12te2tcosty=e^{2t}(C_1cost+C_2sint)-\frac12te^{2t}cost

Write in terms of x by replacing x=et;

y=x2(C1cos(lnx)+C2sin(lnx))12x2ln(x)cos(lnx)y=x^2(C_1cos(lnx)+C_2sin(lnx))-\frac12x^2ln(x)cos(lnx)

Apply the initial conditions to find the constants;

y(1)=1

1=C1C_1

y=x2cos(lnx)+C2x2sin(lnx)12x2lnxcos(lnx)y=x^2cos(lnx)+C_2x^2sin(lnx)-\frac12x^2lnxcos(lnx)

y=C2(x2sin(lnx)x2lnxcos(lnx)2)+x2cos(lnx)y''=C_2(x^2sin(lnx)-\frac{x^2lnxcos(lnx)}{2})+x^2cos(lnx)

Use the condition;

y'(1)=0

0=C2(0+0)+0

C2=0

Hence;y=x2cos(lnx)12x2ln(x)cos(lnx)y=x^2cos(lnx)-\frac12x^2ln(x)cos(lnx)








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS