Solution;
This is a Cauchy Euler differential equation;
Substitute x=et hence t=ln(x)
dxdy=dtdydxdt=e−tdtdy
dx2d2y=dxd(e−tdtdy)=−e−2tdtdy+e−2tdt2d2y
Substitute in the given equation;
e2t(−e−2tdtdy+e−2tdt2d2y)−3et(e−tdtdy)+5y=e2tsin(t)
Simplify;
dtd2y−4dtdy+5y=e2tsin(t)
Above equation is homogeneous;
The characteristic equation ;
r2+4r+5=(r−2)2+1
The roots are;
r=2+i and r=2-i
The homogeneous solution;
yh=e2t(C1cos(t)+C2sin(t))
The particular solution;
yp=t.(e2tAcost+e2tBsint)
By distribution;
yp=te2t(Acost+Bsint)
Differentiating;
yp′=(2te2t+e2t)(Acost+Bsint)+te2t(−Asint+Bcost)
Differentiate ;yp′′=(4te2t+4e2t)(Acost+Bsint)+(4te2t+2e2t)(−Asint+Bcost)+te2t(−Acost−Bsint)
Substitute into the transformed equation and simplify;
e2t(−2Asint+2Bcost)=e2tsint
Equate the coefficients;
-2A=1;A=-0.5
B=0
Thefore;
yp=−21te2tcost
Since ;
y=yh+yp
The general solution of the equation is ;
y=e2t(C1cost+C2sint)−21te2tcost
Write in terms of x by replacing x=et;
y=x2(C1cos(lnx)+C2sin(lnx))−21x2ln(x)cos(lnx)
Apply the initial conditions to find the constants;
y(1)=1
1=C1
y=x2cos(lnx)+C2x2sin(lnx)−21x2lnxcos(lnx)
y′′=C2(x2sin(lnx)−2x2lnxcos(lnx))+x2cos(lnx)
Use the condition;
y'(1)=0
0=C2(0+0)+0
C2=0
Hence;y=x2cos(lnx)−21x2ln(x)cos(lnx)
Comments