Question #199577

solve the following differential equations -


sin-1(dy/dx)= x+y


(1+y)2dx=(tan-1y-x)dy


(D-1)2(D2+1)2 Y= sin2 (x/2) + ex + x


2x2y(d2y/dx2) + 4y2= x2 ( dy/dx)2 +2xy (dy/dx)

1
Expert's answer
2022-01-13T07:32:56-0500

1)

y=sin(x+y)y'=sin(x+y)

x+y=vx+y=v

v1=yv'-1=y'

v1=sinvv'-1=sinv

dv1+sinv=dx\frac{dv}{1+sinv}=dx


dv1+sinv=sec2(v/2)(tan(v/2)+1)2dv=u=tan(v/2)+1,dv=2sec2(v/2)du=\frac{dv}{1+sinv}=\int \frac{sec^2(v/2)}{(tan(v/2)+1)^2}dv=|u=tan(v/2)+1,dv=\frac{2}{sec^2(v/2)}du|=


=2du/u2=2/u=2tan(v/2)+1=\int 2 du/u^2=-2/u=-\frac{2}{tan(v/2)+1}


2tan((x+y)/2)+1=x+c-\frac{2}{tan((x+y)/2)+1}=x+c



2)

R=(y+1)2,S=xtan1yR=(y+1)^2,S=x-tan^{-1}y

find integrating factor μ(y)\mu(y) such that

μR+yμS=0\mu R+y'\mu S=0 is exact

then:

y(μR)=x(μS)\frac{\partial}{\partial y}(\mu R)=\frac{\partial}{\partial x}(\mu S)


dμ/dy(y+1)2+2(y+1)μ=μd\mu /dy(y+1)^2+2(y+1)\mu =\mu


dμ/dyμ=2y1(y+1)2\frac{d\mu /dy}{\mu}=\frac{-2y-1}{(y+1)^2}


lnμ=2ln(y+1)1y+1ln\mu =-2ln(y+1)-\frac{1}{y+1}

integrating factor:

μ(y)=e1/(y+1)(y+1)2\mu(y)=\frac{e^{-1/(y+1)}}{(y+1)^2}


then:

e1/(y+1)+(e1/(y+1)(xtan1y))y(y+1)2=0e^{-1/(y+1)}+\frac{(e^{-1/(y+1)}(x-tan^{-1}y))y'}{(y+1)^2}=0


P(x,y)=e1/(y+1),Q(x,y)=e1/(y+1)(xtan1y)(y+1)2P(x,y)=e^{-1/(y+1)},Q(x,y)=\frac{e^{-1/(y+1)}(x-tan^{-1}y)}{(y+1)^2}


f(x,y)=P(x,y)dx=e1/(y+1)dx=xe1/(y+1)+g(y)f(x,y)=\int P(x,y)dx=\int e^{-1/(y+1)}dx=xe^{-1/(y+1)}+g(y)


f(x,y)y=xe1/(y+1)(y+1)2+dg(y)dy\frac{\partial f(x,y)}{\partial y}=\frac{xe^{-1/(y+1)}}{(y+1)^2}+\frac{dg(y)}{dy}


f(x,y)y=Q(x,y)\frac{\partial f(x,y)}{\partial y}=Q(x,y)


xe1/(y+1)(y+1)2+dg(y)dy=e1/(y+1)(xtan1y)(y+1)2\frac{xe^{-1/(y+1)}}{(y+1)^2}+\frac{dg(y)}{dy}=\frac{e^{-1/(y+1)}(x-tan^{-1}y)}{(y+1)^2}


dg(y)dy=e1/(y+1)tan1y(y+1)2\frac{dg(y)}{dy}=-\frac{e^{-1/(y+1)}tan^{-1}y}{(y+1)^2}


g(y)=e1/(y+1)tan1y(y+1)2dy=e1/(y+1)12ie1/2+i/2Ei(1y+1+1i2)+g(y)=\int -\frac{e^{-1/(y+1)}tan^{-1}y}{(y+1)^2}dy=-e^{-1/(y+1)}-\frac{1}{2}ie^{-1/2+i/2}Ei(-\frac{1}{y+1}+\frac{1-i}{2})+


+12ie1/2i/2Ei(1y+1+1+i2)e1/(y+1)(tan1y1)+\frac{1}{2}ie^{-1/2-i/2}Ei(-\frac{1}{y+1}+\frac{1+i}{2})--e^{-1/(y+1)}(tan^{-1}y-1)


f(x,y)=xe1/(y+1)e1/(y+1)12ie1/2+i/2Ei(1y+1+1i2)+f(x,y)=xe^{-1/(y+1)}-e^{-1/(y+1)}-\frac{1}{2}ie^{-1/2+i/2}Ei(-\frac{1}{y+1}+\frac{1-i}{2})+


+12ie1/2i/2Ei(1y+1+1+i2)e1/(y+1)(tan1y1)+\frac{1}{2}ie^{-1/2-i/2}Ei(-\frac{1}{y+1}+\frac{1+i}{2})--e^{-1/(y+1)}(tan^{-1}y-1)


solution:

f(x,y)=cf(x,y)=c


xe1/(y+1)e1/(y+1)12ie1/2+i/2Ei(1y+1+1i2)+xe^{-1/(y+1)}-e^{-1/(y+1)}-\frac{1}{2}ie^{-1/2+i/2}Ei(-\frac{1}{y+1}+\frac{1-i}{2})+

+12ie1/2i/2Ei(1y+1+1+i2)e1/(y+1)(tan1y1)=c+\frac{1}{2}ie^{-1/2-i/2}Ei(-\frac{1}{y+1}+\frac{1+i}{2})--e^{-1/(y+1)}(tan^{-1}y-1)=c


where Ei is exponential integral:

Ei(x)=xetdt/tEi(x)=\int_{-\infin}^x e^t dt/t


3)

characteristic equation:

(k1)2(k2+1)2=0(k-1)^2(k^2+1)^2=0

k1,2=1k_{1,2}=1

k3,4,5,6=±ik_{3,4,5,6}=\pm i

yc=c1ex+c2xex+c3cosx+c4sinx+c5xcosx+c6xsinxy_c=c_1e^x+c_2xe^x+c_3cosx+c_4sinx+c_5xcosx+c_6xsinx


for particular solution:

yp1=ex(1+1)2x22!=x2ex/4y_{p1}=\frac{e^x}{(1+1)^2}\frac{x^2}{2!}=x^2e^x/4


sin2(x/2)=1cosx2sin^2 (x/2)=\frac{1-cosx}{2}


yp2=12(22D)(D2+1)x2cosxdx=18(1+D)(D2+1)xsinxy_{p2}=-\frac{1}{2(-2-2D)(D^2+1)}\frac{x}{2}\int cosxdx=\frac{1}{8(1+D)(D^2+1)}xsinx


1(D2+1)xsinx=1(D2+1)I.P.(xeix)=I.P.eix12Di(1D2i+...)x=\frac{1}{(D^2+1)}xsinx=\frac{1}{(D^2+1)}\cdot I.P.(xe^{ix})= I.P.e^{ix}\frac{1}{2Di}(1-\frac{D}{2i}+...)x=


I.P.eix12Di(x12i)=I.P.eix12i(x2/2x2i)=I.P.e^{ix}\frac{1}{2Di}(x-\frac{1}{2i})= I.P.e^{ix}\frac{1}{2i}(x^2/2-\frac{x}{2i})=


=I.P.(x2/2x2i)(cosx+isinx)=xcosx/2+x2sinx/2= I.P.(x^2/2-\frac{x}{2i})(cosx+isinx)=xcosx/2+x^2sinx/2


where I.P. is Imaginary part


yp2=18(1+D)(xcosx/2+x2sinx/2)y_{p2}=\frac{1}{8(1+D)}(xcosx/2+x^2sinx/2)


1(1+D)xcosx=R.P.eix1(1+D+i)x=R.P.eix(1i2+iD/2...)x=\frac{1}{(1+D)}xcosx=R.P.e^{ix}\frac{1}{(1+D+i)}x=R.P.e^{ix}(\frac{1-i}{2}+iD/2-...)x=


=R.P.((xix+i))(cosx+isinx)/2=(xcosx+(x1)sinx)/2=R.P.((x-ix+i))(cosx+isinx)/2=(xcosx+(x-1)sinx)/2


where R.P. is real part


1(1+D)x2sinx=I.P.eix(1i2+iD/2(1+i)D2/4+...)x2=\frac{1}{(1+D)}x^2sinx=I.P.e^{ix}(\frac{1-i}{2}+iD/2-(1+i)D^2/4+...)x^2=


=I.P.(cosx+isinx)((x2ix2)/2+ix(1+i)/2)==I.P.(cosx+isinx)((x^2-ix^2)/2+ix-(1+i)/2)=


=x2cosx/2+xcosxcosx/2+x2sinx/2sinx/2=-x^2cosx/2+xcosx-cosx/2+x^2sinx/2-sinx/2


yp2=132((x2)sinx(x2+1)cosx+3xcosx+x2sinx)y_{p2}=\frac{1}{32}((x-2)sinx -(x^2+1)cosx+3xcosx+x^2sinx)


yp3=1(D1)2(D2+1)2(x+1/2)=(1+2D+...)2(1D2+...)2(x+1/2)=y_{p3}=\frac{1}{(D-1)^2(D^2+1)^2}(x+1/2)=(1+2D+...)^2(1-D^2+...)^2(x+1/2)=


=(1+2D+...)(x+5/2)=x+9/2=(1+2D+...)(x+5/2)=x+9/2


y=c1ex+c2xex+c3cosx+c4sinx+c5xcosx+c6xsinx+x2ex/4+y=c_1e^x+c_2xe^x+c_3cosx+c_4sinx+c_5xcosx+c_6xsinx+x^2e^x/4+


+132((x2)sinx(x2+1)cosx+3xcosx+x2sinx)+x+9/2+\frac{1}{32}((x-2)sinx -(x^2+1)cosx+3xcosx+x^2sinx)+x+9/2


4)

2x2yy+4y2=x2(y)2+2xyy2x^2yy''+4y^2=x^2(y')^2+2xyy'


y=x2z2y=x^2z^2

then:

y=x2z2y=x^2z^2

y=2xz2+2x2zzy'=2xz^2+2x^2zz'

y=2z2+4xzz+4xzz+2x2((z)2+zz)y''=2z^2+4xzz'+4xzz'+2x^2((z')^2+zz'')


2x2x2z2(2z2+4xzz+4xzz+2x2((z)2+zz))+4x4z4=2x^2x^2z^2(2z^2+4xzz'+4xzz'+2x^2((z')^2+zz''))+4x^4z^4=

=x2(2xz2+2x2zz)2+2xx2z2(2xz2+2x2zz)=x^2(2xz^2+2x^2zz')^2+2xx^2z^2(2xz^2+2x^2zz')


x2z2(z2+4xzz+x2((z)2+zz))+x2z4=x^2z^2(z^2+4xzz'+x^2((z')^2+zz''))+x^2z^4=

=x2z4+2x3z3z+x4z2(z)2+xz2(xz2+x2zz)=x^2z^4+2x^3z^3z'+x^4z^2(z')^2+xz^2(xz^2+x^2zz')


z2+4xzz+x2((z)2+zz)+z2=z2+2xzz+x2(z)2+z2+xzzz^2+4xzz'+x^2((z')^2+zz'')+z^2=z^2+2xzz'+x^2(z')^2+z^2+xzz'

xzz+x2zz=0xzz'+x^2zz''=0

xz(z+xz)=0xz(z'+xz'')=0


z+xz=0z'+xz''=0

z=uz'=u

u+xu=0u+xu'=0

du/u=dx/xdu/u=-dx/x

lnu=lnx+lnc1lnu=-lnx+lnc_1

u=c1/xu=c_1/x

dz=c1dx/xdz=c_1dx/x

z=c1lnx+c2z=c_1lnx+c_2


y(x)=x2(c1lnx+c2)2y(x)=x^2(c_1lnx+c_2)^2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS