solve the following differential equations -
sin-1(dy/dx)= x+y
(1+y)2dx=(tan-1y-x)dy
(D-1)2(D2+1)2 Y= sin2 (x/2) + ex + x
2x2y(d2y/dx2) + 4y2= x2 ( dy/dx)2 +2xy (dy/dx)
1)
"y'=sin(x+y)"
"x+y=v"
"v'-1=y'"
"v'-1=sinv"
"\\frac{dv}{1+sinv}=dx"
"\\frac{dv}{1+sinv}=\\int \\frac{sec^2(v\/2)}{(tan(v\/2)+1)^2}dv=|u=tan(v\/2)+1,dv=\\frac{2}{sec^2(v\/2)}du|="
"=\\int 2 du\/u^2=-2\/u=-\\frac{2}{tan(v\/2)+1}"
"-\\frac{2}{tan((x+y)\/2)+1}=x+c"
2)
"R=(y+1)^2,S=x-tan^{-1}y"
find integrating factor "\\mu(y)" such that
"\\mu R+y'\\mu S=0" is exact
then:
"\\frac{\\partial}{\\partial y}(\\mu R)=\\frac{\\partial}{\\partial x}(\\mu S)"
"d\\mu \/dy(y+1)^2+2(y+1)\\mu =\\mu"
"\\frac{d\\mu \/dy}{\\mu}=\\frac{-2y-1}{(y+1)^2}"
"ln\\mu =-2ln(y+1)-\\frac{1}{y+1}"
integrating factor:
"\\mu(y)=\\frac{e^{-1\/(y+1)}}{(y+1)^2}"
then:
"e^{-1\/(y+1)}+\\frac{(e^{-1\/(y+1)}(x-tan^{-1}y))y'}{(y+1)^2}=0"
"P(x,y)=e^{-1\/(y+1)},Q(x,y)=\\frac{e^{-1\/(y+1)}(x-tan^{-1}y)}{(y+1)^2}"
"f(x,y)=\\int P(x,y)dx=\\int e^{-1\/(y+1)}dx=xe^{-1\/(y+1)}+g(y)"
"\\frac{\\partial f(x,y)}{\\partial y}=\\frac{xe^{-1\/(y+1)}}{(y+1)^2}+\\frac{dg(y)}{dy}"
"\\frac{\\partial f(x,y)}{\\partial y}=Q(x,y)"
"\\frac{xe^{-1\/(y+1)}}{(y+1)^2}+\\frac{dg(y)}{dy}=\\frac{e^{-1\/(y+1)}(x-tan^{-1}y)}{(y+1)^2}"
"\\frac{dg(y)}{dy}=-\\frac{e^{-1\/(y+1)}tan^{-1}y}{(y+1)^2}"
"g(y)=\\int -\\frac{e^{-1\/(y+1)}tan^{-1}y}{(y+1)^2}dy=-e^{-1\/(y+1)}-\\frac{1}{2}ie^{-1\/2+i\/2}Ei(-\\frac{1}{y+1}+\\frac{1-i}{2})+"
"+\\frac{1}{2}ie^{-1\/2-i\/2}Ei(-\\frac{1}{y+1}+\\frac{1+i}{2})--e^{-1\/(y+1)}(tan^{-1}y-1)"
"f(x,y)=xe^{-1\/(y+1)}-e^{-1\/(y+1)}-\\frac{1}{2}ie^{-1\/2+i\/2}Ei(-\\frac{1}{y+1}+\\frac{1-i}{2})+"
"+\\frac{1}{2}ie^{-1\/2-i\/2}Ei(-\\frac{1}{y+1}+\\frac{1+i}{2})--e^{-1\/(y+1)}(tan^{-1}y-1)"
solution:
"f(x,y)=c"
"xe^{-1\/(y+1)}-e^{-1\/(y+1)}-\\frac{1}{2}ie^{-1\/2+i\/2}Ei(-\\frac{1}{y+1}+\\frac{1-i}{2})+"
"+\\frac{1}{2}ie^{-1\/2-i\/2}Ei(-\\frac{1}{y+1}+\\frac{1+i}{2})--e^{-1\/(y+1)}(tan^{-1}y-1)=c"
where Ei is exponential integral:
"Ei(x)=\\int_{-\\infin}^x e^t dt\/t"
3)
characteristic equation:
"(k-1)^2(k^2+1)^2=0"
"k_{1,2}=1"
"k_{3,4,5,6}=\\pm i"
"y_c=c_1e^x+c_2xe^x+c_3cosx+c_4sinx+c_5xcosx+c_6xsinx"
for particular solution:
"y_{p1}=\\frac{e^x}{(1+1)^2}\\frac{x^2}{2!}=x^2e^x\/4"
"sin^2 (x\/2)=\\frac{1-cosx}{2}"
"y_{p2}=-\\frac{1}{2(-2-2D)(D^2+1)}\\frac{x}{2}\\int cosxdx=\\frac{1}{8(1+D)(D^2+1)}xsinx"
"\\frac{1}{(D^2+1)}xsinx=\\frac{1}{(D^2+1)}\\cdot I.P.(xe^{ix})= I.P.e^{ix}\\frac{1}{2Di}(1-\\frac{D}{2i}+...)x="
"I.P.e^{ix}\\frac{1}{2Di}(x-\\frac{1}{2i})= I.P.e^{ix}\\frac{1}{2i}(x^2\/2-\\frac{x}{2i})="
"= I.P.(x^2\/2-\\frac{x}{2i})(cosx+isinx)=xcosx\/2+x^2sinx\/2"
where I.P. is Imaginary part
"y_{p2}=\\frac{1}{8(1+D)}(xcosx\/2+x^2sinx\/2)"
"\\frac{1}{(1+D)}xcosx=R.P.e^{ix}\\frac{1}{(1+D+i)}x=R.P.e^{ix}(\\frac{1-i}{2}+iD\/2-...)x="
"=R.P.((x-ix+i))(cosx+isinx)\/2=(xcosx+(x-1)sinx)\/2"
where R.P. is real part
"\\frac{1}{(1+D)}x^2sinx=I.P.e^{ix}(\\frac{1-i}{2}+iD\/2-(1+i)D^2\/4+...)x^2="
"=I.P.(cosx+isinx)((x^2-ix^2)\/2+ix-(1+i)\/2)="
"=-x^2cosx\/2+xcosx-cosx\/2+x^2sinx\/2-sinx\/2"
"y_{p2}=\\frac{1}{32}((x-2)sinx -(x^2+1)cosx+3xcosx+x^2sinx)"
"y_{p3}=\\frac{1}{(D-1)^2(D^2+1)^2}(x+1\/2)=(1+2D+...)^2(1-D^2+...)^2(x+1\/2)="
"=(1+2D+...)(x+5\/2)=x+9\/2"
"y=c_1e^x+c_2xe^x+c_3cosx+c_4sinx+c_5xcosx+c_6xsinx+x^2e^x\/4+"
"+\\frac{1}{32}((x-2)sinx -(x^2+1)cosx+3xcosx+x^2sinx)+x+9\/2"
4)
"2x^2yy''+4y^2=x^2(y')^2+2xyy'"
"y=x^2z^2"
then:
"y=x^2z^2"
"y'=2xz^2+2x^2zz'"
"y''=2z^2+4xzz'+4xzz'+2x^2((z')^2+zz'')"
"2x^2x^2z^2(2z^2+4xzz'+4xzz'+2x^2((z')^2+zz''))+4x^4z^4="
"=x^2(2xz^2+2x^2zz')^2+2xx^2z^2(2xz^2+2x^2zz')"
"x^2z^2(z^2+4xzz'+x^2((z')^2+zz''))+x^2z^4="
"=x^2z^4+2x^3z^3z'+x^4z^2(z')^2+xz^2(xz^2+x^2zz')"
"z^2+4xzz'+x^2((z')^2+zz'')+z^2=z^2+2xzz'+x^2(z')^2+z^2+xzz'"
"xzz'+x^2zz''=0"
"xz(z'+xz'')=0"
"z'+xz''=0"
"z'=u"
"u+xu'=0"
"du\/u=-dx\/x"
"lnu=-lnx+lnc_1"
"u=c_1\/x"
"dz=c_1dx\/x"
"z=c_1lnx+c_2"
"y(x)=x^2(c_1lnx+c_2)^2"
Comments
Leave a comment