1)
y′=sin(x+y)
x+y=v
v′−1=y′
v′−1=sinv
1+sinvdv=dx
1+sinvdv=∫(tan(v/2)+1)2sec2(v/2)dv=∣u=tan(v/2)+1,dv=sec2(v/2)2du∣=
=∫2du/u2=−2/u=−tan(v/2)+12
−tan((x+y)/2)+12=x+c
2)
R=(y+1)2,S=x−tan−1y
find integrating factor μ(y) such that
μR+y′μS=0 is exact
then:
∂y∂(μR)=∂x∂(μS)
dμ/dy(y+1)2+2(y+1)μ=μ
μdμ/dy=(y+1)2−2y−1
lnμ=−2ln(y+1)−y+11
integrating factor:
μ(y)=(y+1)2e−1/(y+1)
then:
e−1/(y+1)+(y+1)2(e−1/(y+1)(x−tan−1y))y′=0
P(x,y)=e−1/(y+1),Q(x,y)=(y+1)2e−1/(y+1)(x−tan−1y)
f(x,y)=∫P(x,y)dx=∫e−1/(y+1)dx=xe−1/(y+1)+g(y)
∂y∂f(x,y)=(y+1)2xe−1/(y+1)+dydg(y)
∂y∂f(x,y)=Q(x,y)
(y+1)2xe−1/(y+1)+dydg(y)=(y+1)2e−1/(y+1)(x−tan−1y)
dydg(y)=−(y+1)2e−1/(y+1)tan−1y
g(y)=∫−(y+1)2e−1/(y+1)tan−1ydy=−e−1/(y+1)−21ie−1/2+i/2Ei(−y+11+21−i)+
+21ie−1/2−i/2Ei(−y+11+21+i)−−e−1/(y+1)(tan−1y−1)
f(x,y)=xe−1/(y+1)−e−1/(y+1)−21ie−1/2+i/2Ei(−y+11+21−i)+
+21ie−1/2−i/2Ei(−y+11+21+i)−−e−1/(y+1)(tan−1y−1)
solution:
f(x,y)=c
xe−1/(y+1)−e−1/(y+1)−21ie−1/2+i/2Ei(−y+11+21−i)+
+21ie−1/2−i/2Ei(−y+11+21+i)−−e−1/(y+1)(tan−1y−1)=c
where Ei is exponential integral:
Ei(x)=∫−∞xetdt/t
3)
characteristic equation:
(k−1)2(k2+1)2=0
k1,2=1
k3,4,5,6=±i
yc=c1ex+c2xex+c3cosx+c4sinx+c5xcosx+c6xsinx
for particular solution:
yp1=(1+1)2ex2!x2=x2ex/4
sin2(x/2)=21−cosx
yp2=−2(−2−2D)(D2+1)12x∫cosxdx=8(1+D)(D2+1)1xsinx
(D2+1)1xsinx=(D2+1)1⋅I.P.(xeix)=I.P.eix2Di1(1−2iD+...)x=
I.P.eix2Di1(x−2i1)=I.P.eix2i1(x2/2−2ix)=
=I.P.(x2/2−2ix)(cosx+isinx)=xcosx/2+x2sinx/2
where I.P. is Imaginary part
yp2=8(1+D)1(xcosx/2+x2sinx/2)
(1+D)1xcosx=R.P.eix(1+D+i)1x=R.P.eix(21−i+iD/2−...)x=
=R.P.((x−ix+i))(cosx+isinx)/2=(xcosx+(x−1)sinx)/2
where R.P. is real part
(1+D)1x2sinx=I.P.eix(21−i+iD/2−(1+i)D2/4+...)x2=
=I.P.(cosx+isinx)((x2−ix2)/2+ix−(1+i)/2)=
=−x2cosx/2+xcosx−cosx/2+x2sinx/2−sinx/2
yp2=321((x−2)sinx−(x2+1)cosx+3xcosx+x2sinx)
yp3=(D−1)2(D2+1)21(x+1/2)=(1+2D+...)2(1−D2+...)2(x+1/2)=
=(1+2D+...)(x+5/2)=x+9/2
y=c1ex+c2xex+c3cosx+c4sinx+c5xcosx+c6xsinx+x2ex/4+
+321((x−2)sinx−(x2+1)cosx+3xcosx+x2sinx)+x+9/2
4)
2x2yy′′+4y2=x2(y′)2+2xyy′
y=x2z2
then:
y=x2z2
y′=2xz2+2x2zz′
y′′=2z2+4xzz′+4xzz′+2x2((z′)2+zz′′)
2x2x2z2(2z2+4xzz′+4xzz′+2x2((z′)2+zz′′))+4x4z4=
=x2(2xz2+2x2zz′)2+2xx2z2(2xz2+2x2zz′)
x2z2(z2+4xzz′+x2((z′)2+zz′′))+x2z4=
=x2z4+2x3z3z′+x4z2(z′)2+xz2(xz2+x2zz′)
z2+4xzz′+x2((z′)2+zz′′)+z2=z2+2xzz′+x2(z′)2+z2+xzz′
xzz′+x2zz′′=0
xz(z′+xz′′)=0
z′+xz′′=0
z′=u
u+xu′=0
du/u=−dx/x
lnu=−lnx+lnc1
u=c1/x
dz=c1dx/x
z=c1lnx+c2
y(x)=x2(c1lnx+c2)2
Comments