Question #199570

Solve the following PDEs:

i) (3D2 - 2D2 + D - 1 )z = 4e x+y cos(x + y )

ii) (D + D' - 1) (D + 2D' - 3) z = 4 + 3x + 6y .

1
Expert's answer
2021-06-10T05:28:34-0400

z=C.F.+P.I.z=C.F.+P.I.


I)

D2+D1=(D+1+52)(D+152)D^2+D-1=(D+\frac{1+\sqrt{5}}{2})(D+\frac{1-\sqrt{5}}{2})


C.F.=e1+52φ1(y)+e152φ2(y)C.F.=e^{\frac{1+\sqrt{5}}{2}}\varphi_1(y)+e^{\frac{1-\sqrt{5}}{2}}\varphi_2(y)


P.I.=1D2+D14ex+ycos(x+y)=4ex+y1D2+3D+1cos(x+y)=P.I.=\frac{1}{D^2+D-1}4e^{x+y}cos(x+y)=4e^{x+y}\frac{1}{D^2+3D+1}cos(x+y)=


=4ex+y3D25cos(x+y)=45ex+y(3sin(x+y)+2cos(x+y))=4e^{x+y}\frac{3D-2}{5}cos(x+y)=-\frac{4}{5}e^{x+y}(3sin(x+y)+2cos(x+y))


ii)

C.F.=exφ1(yx)+e3xφ2(yx)C.F.=e^x\varphi_1(y-x)+e^{3x}\varphi_2(y-x)


P.I.=1(D+D1)(D+2D3)(4+3x+6y)=P.I.=\frac{1}{(D+D'-1)(D+2D'-3)}(4+3x+6y)=


=13(1+(D+D)+D+2D3+...)(4+3x+6y)=13(18+3x+6y)==\frac{1}{3}(1+(D+D')+\frac{D+2D'}{3}+...)(4+3x+6y)=\frac{1}{3}(18+3x+6y)=


=6+x+2y=6+x+2y


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS