Solve the following PDEs:
i) (3D2 - 2D2 + D - 1 )z = 4e x+y cos(x + y )
ii) (D + D' - 1) (D + 2D' - 3) z = 4 + 3x + 6y .
"z=C.F.+P.I."
I)
"D^2+D-1=(D+\\frac{1+\\sqrt{5}}{2})(D+\\frac{1-\\sqrt{5}}{2})"
"C.F.=e^{\\frac{1+\\sqrt{5}}{2}}\\varphi_1(y)+e^{\\frac{1-\\sqrt{5}}{2}}\\varphi_2(y)"
"P.I.=\\frac{1}{D^2+D-1}4e^{x+y}cos(x+y)=4e^{x+y}\\frac{1}{D^2+3D+1}cos(x+y)="
"=4e^{x+y}\\frac{3D-2}{5}cos(x+y)=-\\frac{4}{5}e^{x+y}(3sin(x+y)+2cos(x+y))"
ii)
"C.F.=e^x\\varphi_1(y-x)+e^{3x}\\varphi_2(y-x)"
"P.I.=\\frac{1}{(D+D'-1)(D+2D'-3)}(4+3x+6y)="
"=\\frac{1}{3}(1+(D+D')+\\frac{D+2D'}{3}+...)(4+3x+6y)=\\frac{1}{3}(18+3x+6y)="
"=6+x+2y"
Comments
Leave a comment