Answer to Question #199570 in Differential Equations for Rajkumar

Question #199570

Solve the following PDEs:

i) (3D2 - 2D2 + D - 1 )z = 4e x+y cos(x + y )

ii) (D + D' - 1) (D + 2D' - 3) z = 4 + 3x + 6y .

1
Expert's answer
2021-06-10T05:28:34-0400

"z=C.F.+P.I."


I)

"D^2+D-1=(D+\\frac{1+\\sqrt{5}}{2})(D+\\frac{1-\\sqrt{5}}{2})"


"C.F.=e^{\\frac{1+\\sqrt{5}}{2}}\\varphi_1(y)+e^{\\frac{1-\\sqrt{5}}{2}}\\varphi_2(y)"


"P.I.=\\frac{1}{D^2+D-1}4e^{x+y}cos(x+y)=4e^{x+y}\\frac{1}{D^2+3D+1}cos(x+y)="


"=4e^{x+y}\\frac{3D-2}{5}cos(x+y)=-\\frac{4}{5}e^{x+y}(3sin(x+y)+2cos(x+y))"


ii)

"C.F.=e^x\\varphi_1(y-x)+e^{3x}\\varphi_2(y-x)"


"P.I.=\\frac{1}{(D+D'-1)(D+2D'-3)}(4+3x+6y)="


"=\\frac{1}{3}(1+(D+D')+\\frac{D+2D'}{3}+...)(4+3x+6y)=\\frac{1}{3}(18+3x+6y)="


"=6+x+2y"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS