y(x)=yc+yp
General solution:
yc=c1ex+c2xex+c3cosx+c4sinx+x(c5cosx+c6sinx)
For particular solution:
sin2(x/2)=(1−cosx)/2
Then:
Particular solution:
PI=f(D)1(sin2(x/2)+ex+x)
PI1=f(D)1ex=2!(1+1)2x2ex=8x2ex
PI2=f(D)1(−21cosx)=−21(−2D1cosx+4x∫xsinxdx)=
=4sinx−4x(sinx−xcosx)
PI3=f(D)1(x+1/2)
(D−1)−2=1+2D+...
(D2+1)−2=1−2D+...
PI3=(1−2D)(x+2.5)=x+2.5−2=x+1/2
yp=PI1+PI2+PI3
Comments
Leave a comment