Answer to Question #199568 in Differential Equations for rajkumar

Question #199568

(D-1)2(D2+1)2 y= sin 2(x/2)+ex+x

1
Expert's answer
2021-06-09T09:18:14-0400

y(x)=yc+ypy(x)=y_c+y_p

General solution:

yc=c1ex+c2xex+c3cosx+c4sinx+x(c5cosx+c6sinx)y_c=c_1e^x+c_2xe^x+c_3cosx+c_4sinx+x(c_5cosx+c_6sinx)


For particular solution:

sin2(x/2)=(1cosx)/2sin^2(x/2)=(1-cosx)/2

Then:


Particular solution:

PI=1f(D)(sin2(x/2)+ex+x)PI=\frac{1}{f(D)}(sin^ 2(x/2)+e^x+x)

PI1=1f(D)ex=x2ex2!(1+1)2=x2ex8PI_1=\frac{1}{f(D)}e^x=\frac{x^2e^x}{2!(1+1)^2}=\frac{x^2e^x}{8}


PI2=1f(D)(12cosx)=12(12Dcosx+x4xsinxdx)=PI_2=\frac{1}{f(D)}(-\frac{1}{2}cosx)=-\frac{1}{2}(\frac{1}{-2D}cosx+\frac{x}{4}\int xsinxdx)=


=sinx4x(sinxxcosx)4=\frac{sinx}{4}-\frac{x(sinx-xcosx)}{4}


PI3=1f(D)(x+1/2)PI_3=\frac{1}{f(D)}(x+1/2)


(D1)2=1+2D+...(D-1)^{-2}=1+2D+...

(D2+1)2=12D+...(D^2+1)^{-2}=1-2D+...


PI3=(12D)(x+2.5)=x+2.52=x+1/2PI_3=(1-2D)(x+2.5)=x+2.5-2=x+1/2


yp=PI1+PI2+PI3y_p=PI_1+PI_2+PI_3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment