Answer to Question #193696 in Differential Equations for Sherlock

Question #193696

Find a solution of the Bessel’s equation of order zero. 

5. Find the series solutions of the Laguerre equation (1 ) 0

2

x y   x y  ny  of the form 

( ) ( ) 0 y x c L x  n

, where 

r r

n

r

n x

n r r

n

L x

2

0 ( )![( )!]

( )! ( ) ( 1)

  

. Hence find first four polynomials.

1
Expert's answer
2021-05-20T11:42:47-0400

Given equation,

xy+(1x)y+py=0xy''+(1-x)y'+py=0


Let the solution of equation be-


y=r=0arxk+r,ao0      (1)y=\sum_{r=0}^{\infty} a_rx^{k+r}, a_o\neq 0 ~~~~~~-(1)



Differentiating w.r.t. x-


dydx=r=0ar(k+r)xk+r1      (2)d2ydx2=r=0ar(k+r)(k+r+1)xk+r2    (3)\dfrac{dy}{dx}=\sum_{r=0}^{\infty} a_r (k+r) x^{k+r-1}~~~~~~-(2) \\[9pt] \dfrac{d^2y}{dx^2}=\sum_{r=0}^{\infty} a_r (k+r)(k+r+1) x^{k+r-2}~~~~-(3)


Putting the values of y,y' and y'' we get-


x[r=0ar(k+r)(k+r+1)xk+r2]+(1x)[r=0ar(k+r)xk+r1]+p[r=0arxk+r]=0x[\sum_{r=0}^{\infty} a_r (k+r)(k+r+1) x^{k+r-2}]+(1-x)[\sum_{r=0}^{\infty} a_r (k+r) x^{k+r-1}]+p[\sum_{r=0}^{\infty} a_rx^{k+r}]=0

r=0ar[(k+r)2xk+r2(k+rp)xk+r]=0      (4)\Rightarrow \sum_{r=0}^{\infty} a_r [(k+r)^2x^{k+r-2}-(k+r-p)x^{k+r}]=0~~~~~~-(4)


The recurrence relation is-


ar+1=k+rp(k+r+1)2ar       (5)a_{r+1}=\dfrac{k+r-p}{(k+r+1)^2}a_r~~~~~~~-(5)


When k=0,ar+1=rp(r+1)2ar         (6)k=0, a_{r+1}=\dfrac{r-p}{(r+1)^2} a_r ~~~~~~~~~-(6)


putting r=0,1,2...


a1=paoa2=(1)2p(p1)(2!)2aoa3=(1)3p(p1)(p2)(3!)2aoa_1=-pa_o\\[9pt]a_2=(-1)^2\dfrac{p(p-1)}{(2!)^2}a_o \\[9pt]a_3=\dfrac{(-1)^3p(p-1)(p-2)}{(3!)^2} a_o


On equation the coefficient 


From eqn (1)-


y=r=0arxr=ao+a1x+a2x2+...+arxr+...y=\sum_{r=0}^{\infty} a_r x^r=a_o+a_1x+a_2x^2+...+a_r x^r+...


   =aor=0(1)rp(p1)...(pr+1)(r!)2xr=a_o\sum_{r=0}^{\infty} \dfrac{(-1)^r p(p-1)...(p-r+1)}{(r!)^2}x^r


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment