Find a solution of the Bessel’s equation of order zero.
5. Find the series solutions of the Laguerre equation (1 ) 0
2
x y x y ny of the form
( ) ( ) 0 y x c L x n
, where
r r
n
r
n x
n r r
n
L x
2
0 ( )![( )!]
( )! ( ) ( 1)
Given equation,
"xy''+(1-x)y'+py=0"
Let the solution of equation be-
"y=\\sum_{r=0}^{\\infty} a_rx^{k+r}, a_o\\neq 0 ~~~~~~-(1)"
Differentiating w.r.t. x-
"\\dfrac{dy}{dx}=\\sum_{r=0}^{\\infty} a_r (k+r) x^{k+r-1}~~~~~~-(2)\n\n\\\\[9pt]\n\n\\dfrac{d^2y}{dx^2}=\\sum_{r=0}^{\\infty} a_r (k+r)(k+r+1) x^{k+r-2}~~~~-(3)"
Putting the values of y,y' and y'' we get-
"x[\\sum_{r=0}^{\\infty} a_r (k+r)(k+r+1) x^{k+r-2}]+(1-x)[\\sum_{r=0}^{\\infty} a_r (k+r) x^{k+r-1}]+p[\\sum_{r=0}^{\\infty} a_rx^{k+r}]=0"
"\\Rightarrow \\sum_{r=0}^{\\infty} a_r [(k+r)^2x^{k+r-2}-(k+r-p)x^{k+r}]=0~~~~~~-(4)"
The recurrence relation is-
"a_{r+1}=\\dfrac{k+r-p}{(k+r+1)^2}a_r~~~~~~~-(5)"
When "k=0, a_{r+1}=\\dfrac{r-p}{(r+1)^2} a_r ~~~~~~~~~-(6)"
putting r=0,1,2...
"a_1=-pa_o\\\\[9pt]a_2=(-1)^2\\dfrac{p(p-1)}{(2!)^2}a_o\n\\\\[9pt]a_3=\\dfrac{(-1)^3p(p-1)(p-2)}{(3!)^2} a_o"
On equation the coefficient
From eqn (1)-
"y=\\sum_{r=0}^{\\infty} a_r x^r=a_o+a_1x+a_2x^2+...+a_r x^r+..."
"=a_o\\sum_{r=0}^{\\infty} \\dfrac{(-1)^r p(p-1)...(p-r+1)}{(r!)^2}x^r"
Comments
Leave a comment