Answer to Question #193696 in Differential Equations for Sherlock

Question #193696

Find a solution of the Bessel’s equation of order zero. 

5. Find the series solutions of the Laguerre equation (1 ) 0

2

x y   x y  ny  of the form 

( ) ( ) 0 y x c L x  n

, where 

r r

n

r

n x

n r r

n

L x

2

0 ( )![( )!]

( )! ( ) ( 1)

  

. Hence find first four polynomials.

1
Expert's answer
2021-05-20T11:42:47-0400

Given equation,

"xy''+(1-x)y'+py=0"


Let the solution of equation be-


"y=\\sum_{r=0}^{\\infty} a_rx^{k+r}, a_o\\neq 0 ~~~~~~-(1)"



Differentiating w.r.t. x-


"\\dfrac{dy}{dx}=\\sum_{r=0}^{\\infty} a_r (k+r) x^{k+r-1}~~~~~~-(2)\n\n\\\\[9pt]\n\n\\dfrac{d^2y}{dx^2}=\\sum_{r=0}^{\\infty} a_r (k+r)(k+r+1) x^{k+r-2}~~~~-(3)"


Putting the values of y,y' and y'' we get-


"x[\\sum_{r=0}^{\\infty} a_r (k+r)(k+r+1) x^{k+r-2}]+(1-x)[\\sum_{r=0}^{\\infty} a_r (k+r) x^{k+r-1}]+p[\\sum_{r=0}^{\\infty} a_rx^{k+r}]=0"

"\\Rightarrow \\sum_{r=0}^{\\infty} a_r [(k+r)^2x^{k+r-2}-(k+r-p)x^{k+r}]=0~~~~~~-(4)"


The recurrence relation is-


"a_{r+1}=\\dfrac{k+r-p}{(k+r+1)^2}a_r~~~~~~~-(5)"


When "k=0, a_{r+1}=\\dfrac{r-p}{(r+1)^2} a_r ~~~~~~~~~-(6)"


putting r=0,1,2...


"a_1=-pa_o\\\\[9pt]a_2=(-1)^2\\dfrac{p(p-1)}{(2!)^2}a_o\n\\\\[9pt]a_3=\\dfrac{(-1)^3p(p-1)(p-2)}{(3!)^2} a_o"


On equation the coefficient 


From eqn (1)-


"y=\\sum_{r=0}^{\\infty} a_r x^r=a_o+a_1x+a_2x^2+...+a_r x^r+..."


   "=a_o\\sum_{r=0}^{\\infty} \\dfrac{(-1)^r p(p-1)...(p-r+1)}{(r!)^2}x^r"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS