Given equation,
xy′′+(1−x)y′+py=0
Let the solution of equation be-
y=∑r=0∞arxk+r,ao=0 −(1)
Differentiating w.r.t. x-
dxdy=∑r=0∞ar(k+r)xk+r−1 −(2)dx2d2y=∑r=0∞ar(k+r)(k+r+1)xk+r−2 −(3)
Putting the values of y,y' and y'' we get-
x[∑r=0∞ar(k+r)(k+r+1)xk+r−2]+(1−x)[∑r=0∞ar(k+r)xk+r−1]+p[∑r=0∞arxk+r]=0
⇒∑r=0∞ar[(k+r)2xk+r−2−(k+r−p)xk+r]=0 −(4)
The recurrence relation is-
ar+1=(k+r+1)2k+r−par −(5)
When k=0,ar+1=(r+1)2r−par −(6)
putting r=0,1,2...
a1=−paoa2=(−1)2(2!)2p(p−1)aoa3=(3!)2(−1)3p(p−1)(p−2)ao
On equation the coefficient
From eqn (1)-
y=∑r=0∞arxr=ao+a1x+a2x2+...+arxr+...
=ao∑r=0∞(r!)2(−1)rp(p−1)...(p−r+1)xr
Comments
Leave a comment