Question #192860

Reduce the equation to a set of ODDE. using separation of variable


(del)²A+[k²+f(p)+1/p² g(B)+h(z)]A =0


1
Expert's answer
2021-05-17T16:55:00-0400

(del)2A+[k2+f(p)+1/p2g(B)+h(z)]A=0The auxiliary equation ism2=(k2+f(p)+1/p2g(B)+h(z))m=±ik2+f(p)+1/p2g(B)+h(z)A=C1cos(k2+f(p)+1/p2g(B)+h(z))+C2cos(k2+f(p)+1/p2g(B)+h(z))\displaystyle (del)²A+[k²+f(p)+1/p² g(B)+h(z)]A =0\\ \textsf{The auxiliary equation is}\\ m^2 = -\left(k²+f(p)+1/p² g(B)+h(z)\right)\\ m = \pm i\sqrt{k²+f(p)+1/p² g(B)+h(z)}\\ \therefore A = C_1\cos\left(\sqrt{k²+f(p)+1/p² g(B)+h(z)}\right) + C_2\cos\left(\sqrt{k²+f(p)+1/p² g(B)+h(z)}\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS