Reduce the equation to a set of ODDE. using separation of variable
(del)²A+[k²+f(p)+1/p² g(B)+h(z)]A =0
"\\displaystyle (del)\u00b2A+[k\u00b2+f(p)+1\/p\u00b2 g(B)+h(z)]A =0\\\\\n\\textsf{The auxiliary equation is}\\\\\nm^2 = -\\left(k\u00b2+f(p)+1\/p\u00b2 g(B)+h(z)\\right)\\\\\n\nm = \\pm i\\sqrt{k\u00b2+f(p)+1\/p\u00b2 g(B)+h(z)}\\\\\n\n\\therefore A = C_1\\cos\\left(\\sqrt{k\u00b2+f(p)+1\/p\u00b2 g(B)+h(z)}\\right) + C_2\\cos\\left(\\sqrt{k\u00b2+f(p)+1\/p\u00b2 g(B)+h(z)}\\right)"
Comments
Leave a comment