Reduce the equation to a set of ODDE. using separation of variable
(del)²A+[k²+f(p)+1/p² g(B)+h(z)]A =0
(del)2A+[k2+f(p)+1/p2g(B)+h(z)]A=0The auxiliary equation ism2=−(k2+f(p)+1/p2g(B)+h(z))m=±ik2+f(p)+1/p2g(B)+h(z)∴A=C1cos(k2+f(p)+1/p2g(B)+h(z))+C2cos(k2+f(p)+1/p2g(B)+h(z))\displaystyle (del)²A+[k²+f(p)+1/p² g(B)+h(z)]A =0\\ \textsf{The auxiliary equation is}\\ m^2 = -\left(k²+f(p)+1/p² g(B)+h(z)\right)\\ m = \pm i\sqrt{k²+f(p)+1/p² g(B)+h(z)}\\ \therefore A = C_1\cos\left(\sqrt{k²+f(p)+1/p² g(B)+h(z)}\right) + C_2\cos\left(\sqrt{k²+f(p)+1/p² g(B)+h(z)}\right)(del)2A+[k2+f(p)+1/p2g(B)+h(z)]A=0The auxiliary equation ism2=−(k2+f(p)+1/p2g(B)+h(z))m=±ik2+f(p)+1/p2g(B)+h(z)∴A=C1cos(k2+f(p)+1/p2g(B)+h(z))+C2cos(k2+f(p)+1/p2g(B)+h(z))
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments