Question #192864

1. An object of mass 20 kg is pushed on a floor with a force of 40sin 2t N. Given that the 

frictional force is 20 times the velocity and the object starts from rest, determine the 

velocity of the object as a function of time. 


2. Consider an LCR circuit with L = 0.1 H, C = 0.01 F and R = 3.0. Determine the 

electric current in the circuit, given that at t = 0, the charge in the circuit is zero and the 

current is 2 A.




1
Expert's answer
2021-05-19T12:52:53-0400

(1) Force applied, F=40sin(2t)F=40sin(2t)

Let force of friction =Ff=md(20v)dt=20mdvdt=F_f=m\dfrac{d(20v)}{dt}=20m\dfrac{dv}{dt}

Net force, Fnet=FFf=40sin(2t)20mdvdtF_{net}=F-F_f=40sin(2t)-20m\dfrac{dv}{dt}

ma=40sin(2t)20mdvdtma=40sin(2t)-20m\dfrac{dv}{dt}

a=40sin(2t)m20dvdta=\dfrac{40sin(2t)}{m}-20\dfrac{dv}{dt}

dvdt=40sin(2t)m20dvdt\dfrac{dv}{dt}=\dfrac{40sin(2t)}{m}-20\dfrac{dv}{dt}

21dv=(40sin(2t))mdt21dv=\dfrac{(40sin(2t))}{m}dt

ovdv=121ot(40sin(2t))mdt\intop^v_odv=\dfrac{1}{21}\intop^t_o\dfrac{(40sin(2t))}{m}dt

v=4021×20×2[cos(2t)+1]v=\dfrac{40}{21\times20\times2}[-cos(2t)+1]

v=0.047(1cos2t)v=0.047(1-cos2t)


(2) Inductance, L=0.1 HL=0.1\space H

Capacitance, C=0.01 FC=0.01\space F

Resistance, R=3 ΩR=3\space \Omega

By Kirchoff's law we have,

Ld2qdt2+Rdqdt+qC=0L\dfrac{d^2q}{dt^2}+R\dfrac{dq}{dt}+\dfrac{q}{C}=0


taking R/L=2λ=30R/L=2\lambda=30 and 1/LC=μ2=10001/LC=\mu^2=1000 we get

λ=15\lambda=15 and μ=31.622\mu=31.622

d2qdt2+2λdqdt+μ2q=0\dfrac{d^2q}{dt^2}+2\lambda\dfrac{dq}{dt}+\mu^2q=0


D2+2λD+μ2=0D^2+2\lambda D+\mu^2=0

D2+30D+1000=0D^2+30D+1000=0


Since, μ>λ\mu>\lambda , the roots of the auxiliary equation are imaginary, i.e,

D=λ±iαD=-\lambda\pm i\alpha

where, α2=μ2λ2\alpha^2=\mu^2-\lambda^2


The solution of the equation is q=eλt(c1 cos αt+c2 sin αt)q=e^{-\lambda t}(c_1\space cos\space \alpha t+c_2\space sin\space \alpha t)


at t=0, q=0q=0

0=e0(c1+0)0=e^0(c_1+0)

c1=0c_1=0


differentiating q with respect to time,

dqdt=λeλt(c1 cos αt+c2 sin αt)+eλt α(c1 sin αt+c2 cos αt)\dfrac{dq}{dt}=-\lambda e^{-\lambda t}(c_1\space cos\space \alpha t+c_2\space sin\space \alpha t)+e^{-\lambda t}\space\alpha(-c_1\space sin\space \alpha t+c_2\space cos\space \alpha t)

i(t)=λeλt(c1 cos αt+c2 sin αt)+eλt α(c1 sin αt+c2 cos αt)i(t)=-\lambda e^{-\lambda t}(c_1\space cos\space \alpha t+c_2\space sin\space \alpha t)+e^{-\lambda t}\space\alpha(-c_1\space sin\space \alpha t+c_2\space cos\space \alpha t)


At t=0, i=2

2=α(c2)2=\alpha (c_2)

c2=2α=227.83=0.07c_2=\dfrac{2}{\alpha}=\dfrac{2}{27.83}=0.07


Substituting the values in the above equation,

i(t)=c2eλt(αcosαtλsinαt)i(t)=c_2e^{-\lambda t}(\alpha\cos\alpha t-\lambda\sin\alpha t)

i(t)=0.07e15t(27.83cos(27.83t)15sin(27.83t))i(t)=0.07e^{-15t}(27.83\cos(27.83t)-15\sin(27.83t))


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS