1. An object of mass 20 kg is pushed on a floor with a force of 40sin 2t N. Given that the
frictional force is 20 times the velocity and the object starts from rest, determine the
velocity of the object as a function of time.
2. Consider an LCR circuit with L = 0.1 H, C = 0.01 F and R = 3.0. Determine the
electric current in the circuit, given that at t = 0, the charge in the circuit is zero and the
current is 2 A.
(1) Force applied, "F=40sin(2t)"
Let force of friction "=F_f=m\\dfrac{d(20v)}{dt}=20m\\dfrac{dv}{dt}"
Net force, "F_{net}=F-F_f=40sin(2t)-20m\\dfrac{dv}{dt}"
"ma=40sin(2t)-20m\\dfrac{dv}{dt}"
"a=\\dfrac{40sin(2t)}{m}-20\\dfrac{dv}{dt}"
"\\dfrac{dv}{dt}=\\dfrac{40sin(2t)}{m}-20\\dfrac{dv}{dt}"
"21dv=\\dfrac{(40sin(2t))}{m}dt"
"\\intop^v_odv=\\dfrac{1}{21}\\intop^t_o\\dfrac{(40sin(2t))}{m}dt"
"v=\\dfrac{40}{21\\times20\\times2}[-cos(2t)+1]"
"v=0.047(1-cos2t)"
(2) Inductance, "L=0.1\\space H"
Capacitance, "C=0.01\\space F"
Resistance, "R=3\\space \\Omega"
By Kirchoff's law we have,
"L\\dfrac{d^2q}{dt^2}+R\\dfrac{dq}{dt}+\\dfrac{q}{C}=0"
taking "R\/L=2\\lambda=30" and "1\/LC=\\mu^2=1000" we get
"\\lambda=15" and "\\mu=31.622"
"\\dfrac{d^2q}{dt^2}+2\\lambda\\dfrac{dq}{dt}+\\mu^2q=0"
"D^2+2\\lambda D+\\mu^2=0"
"D^2+30D+1000=0"
Since, "\\mu>\\lambda" , the roots of the auxiliary equation are imaginary, i.e,
"D=-\\lambda\\pm i\\alpha"
where, "\\alpha^2=\\mu^2-\\lambda^2"
The solution of the equation is "q=e^{-\\lambda t}(c_1\\space cos\\space \\alpha t+c_2\\space sin\\space \\alpha t)"
at t=0, "q=0"
"0=e^0(c_1+0)"
"c_1=0"
differentiating q with respect to time,
"\\dfrac{dq}{dt}=-\\lambda e^{-\\lambda t}(c_1\\space cos\\space \\alpha t+c_2\\space sin\\space \\alpha t)+e^{-\\lambda t}\\space\\alpha(-c_1\\space sin\\space \\alpha t+c_2\\space cos\\space \\alpha t)"
"i(t)=-\\lambda e^{-\\lambda t}(c_1\\space cos\\space \\alpha t+c_2\\space sin\\space \\alpha t)+e^{-\\lambda t}\\space\\alpha(-c_1\\space sin\\space \\alpha t+c_2\\space cos\\space \\alpha t)"
At t=0, i=2
"2=\\alpha (c_2)"
"c_2=\\dfrac{2}{\\alpha}=\\dfrac{2}{27.83}=0.07"
Substituting the values in the above equation,
"i(t)=c_2e^{-\\lambda t}(\\alpha\\cos\\alpha t-\\lambda\\sin\\alpha t)"
"i(t)=0.07e^{-15t}(27.83\\cos(27.83t)-15\\sin(27.83t))"
Comments
Leave a comment