(1) Force applied, F=40sin(2t)
Let force of friction =Ff=mdtd(20v)=20mdtdv
Net force, Fnet=F−Ff=40sin(2t)−20mdtdv
ma=40sin(2t)−20mdtdv
a=m40sin(2t)−20dtdv
dtdv=m40sin(2t)−20dtdv
21dv=m(40sin(2t))dt
∫ovdv=211∫otm(40sin(2t))dt
v=21×20×240[−cos(2t)+1]
v=0.047(1−cos2t)
(2) Inductance, L=0.1 H
Capacitance, C=0.01 F
Resistance, R=3 Ω
By Kirchoff's law we have,
Ldt2d2q+Rdtdq+Cq=0
taking R/L=2λ=30 and 1/LC=μ2=1000 we get
λ=15 and μ=31.622
dt2d2q+2λdtdq+μ2q=0
D2+2λD+μ2=0
D2+30D+1000=0
Since, μ>λ , the roots of the auxiliary equation are imaginary, i.e,
D=−λ±iα
where, α2=μ2−λ2
The solution of the equation is q=e−λt(c1 cos αt+c2 sin αt)
at t=0, q=0
0=e0(c1+0)
c1=0
differentiating q with respect to time,
dtdq=−λe−λt(c1 cos αt+c2 sin αt)+e−λt α(−c1 sin αt+c2 cos αt)
i(t)=−λe−λt(c1 cos αt+c2 sin αt)+e−λt α(−c1 sin αt+c2 cos αt)
At t=0, i=2
2=α(c2)
c2=α2=27.832=0.07
Substituting the values in the above equation,
i(t)=c2e−λt(αcosαt−λsinαt)
i(t)=0.07e−15t(27.83cos(27.83t)−15sin(27.83t))
Comments