(3D^2-2D^2+D-1)z=4e^(x+y).cos(x+y)
Given equation is-
"(3D^2-2D^2+D-1)z=4e^{(x+y)}.cos(x+y)\\\\[9pt](D^2+D-1)z=4e^{(x+y)}.cos(x+y)"
Auxiliary equation is-
"m^2+m-1=0"
"m=\\dfrac{-1\\pm \\sqrt{1-4}}{2}=\\dfrac{-1\\pm \\sqrt{3}i}{2}"
Complimentary function is-
"CF=e^{-\\frac{x}{2}}(c_1cos \\dfrac{\\sqrt{3}}{2}x+c_2sin\\dfrac{\\sqrt{3}}{2}x)"
Particular integral is-
"PI=\\dfrac{4e^{x+y}cos(x+y)}{D^2+D-1}"
"=4e^{x+y}\\dfrac{cos(x+y)}{(D+1)^2+(D+1)-1}\\\\[9pt]=4e^{x+y}\\dfrac{cos(x+y)}{D^2+3D+1}\n\\\\[9pt]=4e^{x+y}\\dfrac{cos(x+y)}{-1+3D+1}\\\\[9pt]=4e^{x+y}\\dfrac{cos(x+y)}{3D}\\\\[9pt]=-4e^{(x+y)}\\times \\dfrac{sin(x+y)}{3}"
Complete solution is-
y=CF+PI
"y = e^{-\\frac{x}{2}}(c_1cos \\dfrac{\\sqrt{3}}{2}x+c_2sin\\dfrac{\\sqrt{3}}{2}x)-4e^{(x+y)}\\times \\dfrac{sin(x+y)}{3}"
Comments
Leave a comment