Answer to Question #191488 in Differential Equations for Ravinder Singh

Question #191488

(3D^2-2D^2+D-1)z=4e^(x+y).cos(x+y)


1
Expert's answer
2021-05-11T11:40:26-0400

Given equation is-

"(3D^2-2D^2+D-1)z=4e^{(x+y)}.cos(x+y)\\\\[9pt](D^2+D-1)z=4e^{(x+y)}.cos(x+y)"


Auxiliary equation is-


"m^2+m-1=0"


"m=\\dfrac{-1\\pm \\sqrt{1-4}}{2}=\\dfrac{-1\\pm \\sqrt{3}i}{2}"


Complimentary function is-


"CF=e^{-\\frac{x}{2}}(c_1cos \\dfrac{\\sqrt{3}}{2}x+c_2sin\\dfrac{\\sqrt{3}}{2}x)"



Particular integral is-

"PI=\\dfrac{4e^{x+y}cos(x+y)}{D^2+D-1}"


"=4e^{x+y}\\dfrac{cos(x+y)}{(D+1)^2+(D+1)-1}\\\\[9pt]=4e^{x+y}\\dfrac{cos(x+y)}{D^2+3D+1}\n\\\\[9pt]=4e^{x+y}\\dfrac{cos(x+y)}{-1+3D+1}\\\\[9pt]=4e^{x+y}\\dfrac{cos(x+y)}{3D}\\\\[9pt]=-4e^{(x+y)}\\times \\dfrac{sin(x+y)}{3}"


Complete solution is-


y=CF+PI

"y = e^{-\\frac{x}{2}}(c_1cos \\dfrac{\\sqrt{3}}{2}x+c_2sin\\dfrac{\\sqrt{3}}{2}x)-4e^{(x+y)}\\times \\dfrac{sin(x+y)}{3}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS