Solve :
(D² + 5DD' + 5D'²) z = x sin (3x — 2y)
We have given the differential equation,
"(D^2+5DD'+5D'^2)z = xsin(3x-2y)"
The auxiliary equation is
"m^2+5m+5 = 0"
"m = -5,0"
Hence, "CF = \\phi_1(y-5x) + \\phi_2(y)"
Particular integral PI can be calculated as :
"PI = \\dfrac{1}{(D^2+5DD'+5D'^2)}x.sin(3x-2y)"
Factorize "\\phi (D,D')" and apply these factors turn by turn
"PI = \\dfrac{1}{D(D+5D')}xsin(3x-2y)"
"= \\dfrac{1}{D} \\int_{D+5D'}^{} xsin(3x-10x-2c_1)" because, "y-5x = c_1"
"= \\dfrac{1}{D} \\int xsin(-7x-2c_1)\\delta x = \\dfrac{1}{D} \\int \\dfrac{-xcos(-7x-2c_1)}{-7}+ \\dfrac{sin(-7x-2c_1)}{49}"
"= \\int_{D}^{}(\\dfrac{x}{7}cos(3x-2y)+ \\dfrac{1}{49} sin(3x-2y))\\delta x"
"= \\int_{D}^{}(\\dfrac{x}{7}cos(3x-2c_2)+ \\dfrac{1}{49} sin(3x-2y))\\delta x" because "y= c_2"
"= \\int_{D}^{}(\\dfrac{x}{7}cos(3x-2c_2)\\delta x+ \\dfrac{1}{49} sin(3x-2y))\\delta x"
Letting "a = \\int_{D}^{}(\\dfrac{x}{7}cos(3x-2c_2)\\delta x"
"b = \\dfrac{1}{49} sin(3x-2y))\\delta x"
"a = \\int_{D}^{}(\\dfrac{x}{7}cos(3x-2c_2)\\delta x = \\dfrac{xsin(3x-2c_2)}{21} + \\dfrac{1}{3}\\dfrac{cos(3x-c_2)}{3}"
"a = \\int_{D}^{}(\\dfrac{x}{7}cos(3x-2c_2)\\delta x = \\dfrac{xsin(3x-2c_2)}{21} + \\dfrac{1}{9}{cos(3x-c_2)}"
"b= \\dfrac{1}{49} sin(3x-2y))\\delta x"
"b = \\dfrac{-cos(3x-c_2)}{49}+\\dfrac{sin(3x-2c_2)}{147}"
Therefore,
"a+b = \\dfrac{xsin(3x-2c_2)}{21} + \\dfrac{1}{9}{cos(3x-c_2)}+ \\dfrac{-cos(3x-c_2)}{49}+\\dfrac{sin(3x-2c_2)}{147}"
The complete Integral "z=C.I.+P.I."
"z = \\phi_1(y-5x) + \\phi_2(y)+\\dfrac{xsin(3x-2c_2)}{21} + \\dfrac{1}{9}{cos(3x-c_2)}+ \\dfrac{-cos(3x-c_2)}{49}+\\dfrac{sin(3x-2c_2)}{147}"
Comments
Leave a comment