Answer to Question #190820 in Differential Equations for Sourav Mondal

Question #190820

Solve : 

(D² + 5DD' + 5D'²) z = x sin (3x — 2y)


1
Expert's answer
2021-05-11T08:19:03-0400

We have given the differential equation,


(D2+5DD+5D2)z=xsin(3x2y)(D^2+5DD'+5D'^2)z = xsin(3x-2y)


The auxiliary equation is


m2+5m+5=0m^2+5m+5 = 0

m=5,0m = -5,0

Hence, CF=ϕ1(y5x)+ϕ2(y)CF = \phi_1(y-5x) + \phi_2(y)

Particular integral PI can be calculated as :


PI=1(D2+5DD+5D2)x.sin(3x2y)PI = \dfrac{1}{(D^2+5DD'+5D'^2)}x.sin(3x-2y)


Factorize ϕ(D,D)\phi (D,D') and apply these factors turn by turn


PI=1D(D+5D)xsin(3x2y)PI = \dfrac{1}{D(D+5D')}xsin(3x-2y)


=1DD+5Dxsin(3x10x2c1)= \dfrac{1}{D} \int_{D+5D'}^{} xsin(3x-10x-2c_1) because, y5x=c1y-5x = c_1


=1Dxsin(7x2c1)δx=1Dxcos(7x2c1)7+sin(7x2c1)49= \dfrac{1}{D} \int xsin(-7x-2c_1)\delta x = \dfrac{1}{D} \int \dfrac{-xcos(-7x-2c_1)}{-7}+ \dfrac{sin(-7x-2c_1)}{49}


=D(x7cos(3x2y)+149sin(3x2y))δx= \int_{D}^{}(\dfrac{x}{7}cos(3x-2y)+ \dfrac{1}{49} sin(3x-2y))\delta x


=D(x7cos(3x2c2)+149sin(3x2y))δx= \int_{D}^{}(\dfrac{x}{7}cos(3x-2c_2)+ \dfrac{1}{49} sin(3x-2y))\delta x because y=c2y= c_2


=D(x7cos(3x2c2)δx+149sin(3x2y))δx= \int_{D}^{}(\dfrac{x}{7}cos(3x-2c_2)\delta x+ \dfrac{1}{49} sin(3x-2y))\delta x


Letting a=D(x7cos(3x2c2)δxa = \int_{D}^{}(\dfrac{x}{7}cos(3x-2c_2)\delta x


b=149sin(3x2y))δxb = \dfrac{1}{49} sin(3x-2y))\delta x


a=D(x7cos(3x2c2)δx=xsin(3x2c2)21+13cos(3xc2)3a = \int_{D}^{}(\dfrac{x}{7}cos(3x-2c_2)\delta x = \dfrac{xsin(3x-2c_2)}{21} + \dfrac{1}{3}\dfrac{cos(3x-c_2)}{3}


a=D(x7cos(3x2c2)δx=xsin(3x2c2)21+19cos(3xc2)a = \int_{D}^{}(\dfrac{x}{7}cos(3x-2c_2)\delta x = \dfrac{xsin(3x-2c_2)}{21} + \dfrac{1}{9}{cos(3x-c_2)}


b=149sin(3x2y))δxb= \dfrac{1}{49} sin(3x-2y))\delta x


b=cos(3xc2)49+sin(3x2c2)147b = \dfrac{-cos(3x-c_2)}{49}+\dfrac{sin(3x-2c_2)}{147}


Therefore,


a+b=xsin(3x2c2)21+19cos(3xc2)+cos(3xc2)49+sin(3x2c2)147a+b = \dfrac{xsin(3x-2c_2)}{21} + \dfrac{1}{9}{cos(3x-c_2)}+ \dfrac{-cos(3x-c_2)}{49}+\dfrac{sin(3x-2c_2)}{147}



The complete Integral z=C.I.+P.I.z=C.I.+P.I.


z=ϕ1(y5x)+ϕ2(y)+xsin(3x2c2)21+19cos(3xc2)+cos(3xc2)49+sin(3x2c2)147z = \phi_1(y-5x) + \phi_2(y)+\dfrac{xsin(3x-2c_2)}{21} + \dfrac{1}{9}{cos(3x-c_2)}+ \dfrac{-cos(3x-c_2)}{49}+\dfrac{sin(3x-2c_2)}{147}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment