We have given the differential equation,
(D2+5DD′+5D′2)z=xsin(3x−2y)
The auxiliary equation is
m2+5m+5=0
m=−5,0
Hence, CF=ϕ1(y−5x)+ϕ2(y)
Particular integral PI can be calculated as :
PI=(D2+5DD′+5D′2)1x.sin(3x−2y)
Factorize ϕ(D,D′) and apply these factors turn by turn
PI=D(D+5D′)1xsin(3x−2y)
=D1∫D+5D′xsin(3x−10x−2c1) because, y−5x=c1
=D1∫xsin(−7x−2c1)δx=D1∫−7−xcos(−7x−2c1)+49sin(−7x−2c1)
=∫D(7xcos(3x−2y)+491sin(3x−2y))δx
=∫D(7xcos(3x−2c2)+491sin(3x−2y))δx because y=c2
=∫D(7xcos(3x−2c2)δx+491sin(3x−2y))δx
Letting a=∫D(7xcos(3x−2c2)δx
b=491sin(3x−2y))δx
a=∫D(7xcos(3x−2c2)δx=21xsin(3x−2c2)+313cos(3x−c2)
a=∫D(7xcos(3x−2c2)δx=21xsin(3x−2c2)+91cos(3x−c2)
b=491sin(3x−2y))δx
b=49−cos(3x−c2)+147sin(3x−2c2)
Therefore,
a+b=21xsin(3x−2c2)+91cos(3x−c2)+49−cos(3x−c2)+147sin(3x−2c2)
The complete Integral z=C.I.+P.I.
z=ϕ1(y−5x)+ϕ2(y)+21xsin(3x−2c2)+91cos(3x−c2)+49−cos(3x−c2)+147sin(3x−2c2)
Comments
Leave a comment