2ty/t^2+1 -2t(2-ln(t^2+1))y'=0
Given,
(4+t2)dydt+2ty=4t(4+t^2)\dfrac{dy}{dt}+2ty=4t(4+t2)dtdy+2ty=4t
dy2−y=2tdt4+t2\\[9pt] \dfrac{dy}{2-y}=\dfrac{2tdt}{4+t^2}2−ydy=4+t22tdt
Integrating Both the sides-
−ln(2−y)=ln(t2+4)+lnc1orc=2−yt24So,y=2−ct2+4=2t2+8−ct2+4-ln(2-y)=ln(t^2+4)+ln c_1 \\[9pt] or c=\dfrac{2-y}{t^2}{4}\\[9pt] So ,y=2-\dfrac{c}{t^2+4}=\dfrac{2t^2+8-c}{t^2+4}−ln(2−y)=ln(t2+4)+lnc1orc=t22−y4So,y=2−t2+4c=t2+42t2+8−c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment