2ty/t^2+1 -2t(2-ln(t^2+1))y'=0
Given,
"(4+t^2)\\dfrac{dy}{dt}+2ty=4t"
"\\\\[9pt] \\dfrac{dy}{2-y}=\\dfrac{2tdt}{4+t^2}"
Integrating Both the sides-
"-ln(2-y)=ln(t^2+4)+ln c_1\n\n\\\\[9pt]\n\nor c=\\dfrac{2-y}{t^2}{4}\\\\[9pt]\n\n\n\nSo ,y=2-\\dfrac{c}{t^2+4}=\\dfrac{2t^2+8-c}{t^2+4}"
Comments
Leave a comment