We have given the differential equation,
dx2d2y+2dxdy+y=sin2x
(D2+2D+1)y=sin2x
Auxiliary equation is:
m2+2m+1=0
(m+1)2=0
m=−1,−1
CF=(C1+C2x)e−x
PI=D2+2D+1sin2x =sin2x−4+2D+11
=sin2x4D2−92D−3=−251(2D−3)sin2x=−251(4cos2x−3sin2x)
Hence the solution of given differential equation is :
y=(C1+C2x)e−x−251(4cos2x−3sin2x)
Comments
Leave a comment