solve: dx/(y^2 + z^2) = dy/-xy = dz/ -xz
Given differential equation is-
"\\dfrac {dx}{(y^2 + z^2)} = \\dfrac{dy}{-xy} = \\dfrac{dz}{ -xz}"
Taking Last two terms-
"\\dfrac{dy}{-xy}=\\dfrac{dz}{-xz}\\\\[9pt]\\Rightarrow \\dfrac{dy}{y}=\\dfrac{dz}{z}"
Integrate the above equation and we get-
"lny=lnz+lnc_1\\Rightarrow lny=lnc_1z\\Rightarrow y=c_1z~~~~~-(1)"
Also "c_1=\\dfrac{y}{z}~~~~~~-(2)"
Now Taking first and last terms-
"\\dfrac{dx}{y^2+z^2}=\\dfrac{dz}{-xz}\\\\[9pt]\\Rightarrow \\dfrac{ xdx}{z^2c_1^2+z^2}=\\dfrac{dz}{-z}~~~~~~~~~~~~~~~~~~~~\\text{ from eqn.(1)}\\\\[9pt]\\Rightarrow xdx=-(c_1^2+1)zdz"
Integrating Both the sides-
"\\dfrac{x^2}{2}=\\dfrac{-z^2}{2}(c_1+1)^2+c_2"
"c_2=\\dfrac{x^2}{2}+\\dfrac{z^2(\\dfrac{y}{z}+1)^2}{2}~~~~~~~~~~\\text{from eqn.(2)}\\\\[9pt]=\\dfrac{x^2}{2}+\\dfrac{(y+z)^2}{2}~~~~~~~~~-(3)"
The solution of the equation is-
"\\phi(c_1,c_2)=0\n\\\\[9pt]\n\n\n\\phi(\\dfrac{y}{z},\\dfrac{(y+z)^2}{2})=0"
Comments
Leave a comment