Answer to Question #189944 in Differential Equations for AMIT YADAV

Question #189944

solve: dx/(y^2 + z^2) = dy/-xy = dz/ -xz


1
Expert's answer
2021-05-07T14:17:06-0400

Given differential equation is-


dx(y2+z2)=dyxy=dzxz\dfrac {dx}{(y^2 + z^2)} = \dfrac{dy}{-xy} = \dfrac{dz}{ -xz}


Taking Last two terms-


dyxy=dzxzdyy=dzz\dfrac{dy}{-xy}=\dfrac{dz}{-xz}\\[9pt]\Rightarrow \dfrac{dy}{y}=\dfrac{dz}{z}


Integrate the above equation and we get-


lny=lnz+lnc1lny=lnc1zy=c1z     (1)lny=lnz+lnc_1\Rightarrow lny=lnc_1z\Rightarrow y=c_1z~~~~~-(1)


Also c1=yz      (2)c_1=\dfrac{y}{z}~~~~~~-(2)


Now Taking first and last terms-


dxy2+z2=dzxzxdxz2c12+z2=dzz                     from eqn.(1)xdx=(c12+1)zdz\dfrac{dx}{y^2+z^2}=\dfrac{dz}{-xz}\\[9pt]\Rightarrow \dfrac{ xdx}{z^2c_1^2+z^2}=\dfrac{dz}{-z}~~~~~~~~~~~~~~~~~~~~\text{ from eqn.(1)}\\[9pt]\Rightarrow xdx=-(c_1^2+1)zdz


Integrating Both the sides-


x22=z22(c1+1)2+c2\dfrac{x^2}{2}=\dfrac{-z^2}{2}(c_1+1)^2+c_2


c2=x22+z2(yz+1)22          from eqn.(2)=x22+(y+z)22         (3)c_2=\dfrac{x^2}{2}+\dfrac{z^2(\dfrac{y}{z}+1)^2}{2}~~~~~~~~~~\text{from eqn.(2)}\\[9pt]=\dfrac{x^2}{2}+\dfrac{(y+z)^2}{2}~~~~~~~~~-(3)


The solution of the equation is-


ϕ(c1,c2)=0ϕ(yz,(y+z)22)=0\phi(c_1,c_2)=0 \\[9pt] \phi(\dfrac{y}{z},\dfrac{(y+z)^2}{2})=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment